File size: 2,193 Bytes
1858a22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f755fc9
1858a22
f20792e
 
1858a22
 
 
 
90d24f5
 
 
1858a22
 
f755fc9
1858a22
 
 
 
 
 
90d24f5
1858a22
 
 
 
90d24f5
 
1858a22
 
f755fc9
1858a22
 
 
 
 
 
90d24f5
1858a22
 
 
 
90d24f5
1858a22
 
f755fc9
1858a22
 
90d24f5
1858a22
 
 
90d24f5
 
1858a22
 
 
cda5da4
1858a22
cda5da4
1858a22
cda5da4
 
1858a22
 
cda5da4
1858a22
cda5da4
 
1858a22
cda5da4
1858a22
 
 
cda5da4
1858a22
 
cda5da4
1858a22
 
 
 
 
f755fc9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# Examples

### Preamble

```python
import numpy as np
from pysr import *
```

We'll also set up some default options that will
make these simple searches go faster (but are less optimal
for more complex searches).

```python
kwargs = dict(populations=5, niterations=5, annealing=True)
```

## 1. Simple search

Here's a simple example where we 
find the expression `2 cos(x3) + x0^2 - 2`.

```python
X = 2 * np.random.randn(100, 5)
y = 2 * np.cos(X[:, 3]) + X[:, 0] ** 2 - 2
model = PySRRegressor(binary_operators=["+", "-", "*", "/"], **kwargs)
model.fit(X, y)
print(model)
```

## 2. Custom operator

Here, we define a custom operator and use it to find an expression:

```python
X = 2 * np.random.randn(100, 5)
y = 1 / X[:, 0]
model = PySRRegressor(
    binary_operators=["plus", "mult"],
    unary_operators=["inv(x) = 1/x"],
    **kwargs
)
model.fit(X, y)
print(model)
```

## 3. Multiple outputs

Here, we do the same thing, but with multiple expressions at once,
each requiring a different feature.
```python
X = 2 * np.random.randn(100, 5)
y = 1 / X[:, [0, 1, 2]]
model = PySRRegressor(
    binary_operators=["plus", "mult"],
    unary_operators=["inv(x) = 1/x"],
    **kwargs
)
model.fit(X, y)
```

## 4. Plotting an expression

Here, let's use the same equations, but get a format we can actually
use and test. We can add this option after a search via the `set_params`
function:

```python
model.set_params(extra_sympy_mappings={"inv": lambda x: 1/x})
model.sympy()
```
If you look at the lists of expressions before and after, you will
see that the sympy format now has replaced `inv` with `1/`.
We can again look at the equation chosen:
```python
print(model)
```

For now, let's consider the expressions for output 0.
We can see the LaTeX version of this with:
```python
model.latex()[0]
```
or output 1 with `model.latex()[1]`.
and the sympy version with:
```python
model.sympy()[0]
```


Let's plot the prediction against the truth:
```python
from matplotlib import pyplot as plt
plt.scatter(y[:, 0], model(X)[:, 0])
plt.xlabel('Truth')
plt.ylabel('Prediction')
plt.show()
```
Which gives us:

![](https://github.com/MilesCranmer/PySR/raw/master/docs/images/example_plot.png)