File size: 5,301 Bytes
2ceb526
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import functools as ft
import sympy
import string
import random

try:
    import jax
    from jax import numpy as jnp
    from jax.scipy import special as jsp

# Special since need to reduce arguments.
    MUL = 0
    ADD = 1

    _jnp_func_lookup = {
        sympy.Mul: MUL,
        sympy.Add: ADD,
        sympy.div: "jnp.div",
        sympy.Abs: "jnp.abs",
        sympy.sign: "jnp.sign",
        # Note: May raise error for ints.
        sympy.ceiling: "jnp.ceil",
        sympy.floor: "jnp.floor",
        sympy.log: "jnp.log",
        sympy.exp: "jnp.exp",
        sympy.sqrt: "jnp.sqrt",
        sympy.cos: "jnp.cos",
        sympy.acos: "jnp.acos",
        sympy.sin: "jnp.sin",
        sympy.asin: "jnp.asin",
        sympy.tan: "jnp.tan",
        sympy.atan: "jnp.atan",
        sympy.atan2: "jnp.atan2",
        # Note: Also may give NaN for complex results.
        sympy.cosh: "jnp.cosh",
        sympy.acosh: "jnp.acosh",
        sympy.sinh: "jnp.sinh",
        sympy.asinh: "jnp.asinh",
        sympy.tanh: "jnp.tanh",
        sympy.atanh: "jnp.atanh",
        sympy.Pow: "jnp.power",
        sympy.re: "jnp.real",
        sympy.im: "jnp.imag",
        sympy.arg: "jnp.angle",
        # Note: May raise error for ints and complexes
        sympy.erf: "jsp.erf",
        sympy.erfc: "jsp.erfc",
        sympy.LessThan: "jnp.le",
        sympy.GreaterThan: "jnp.ge",
        sympy.And: "jnp.logical_and",
        sympy.Or: "jnp.logical_or",
        sympy.Not: "jnp.logical_not",
        sympy.Max: "jnp.max",
        sympy.Min: "jnp.min",
        sympy.Mod: "jnp.mod",
    }
except ImportError:
    ...

def sympy2jaxtext(expr, parameters, symbols_in):
    if issubclass(expr.func, sympy.Float):
        parameters.append(float(expr))
        return f"parameters[{len(parameters) - 1}]"
    elif issubclass(expr.func, sympy.Integer):
        return "{int(expr)}"
    elif issubclass(expr.func, sympy.Symbol):
        return f"X[:, {[i for i in range(len(symbols_in)) if symbols_in[i] == expr][0]}]"
    else:
        _func = _jnp_func_lookup[expr.func]
        args = [sympy2jaxtext(arg, parameters, symbols_in) for arg in expr.args]
        if _func == MUL:
            return ' * '.join(['(' + arg + ')' for arg in args])
        elif _func == ADD:
            return ' + '.join(['(' + arg + ')' for arg in args])
        else:
            return f'{_func}({", ".join(args)})'

def sympy2jax(equation, symbols_in):
    """Returns a function f and its parameters;
    the function takes an input matrix, and a list of arguments:
            f(X, parameters)
    where the parameters appear in the JAX equation.

    # Examples:

        Let's create a function in SymPy:
        ```python
        x, y = symbols('x y')
        cosx = 1.0 * sympy.cos(x) + 3.2 * y
        ```
        Let's get the JAX version. We pass the equation, and
        the symbols required.
        ```python
        f, params = sympy2jax(cosx, [x, y])
        ```
        The order you supply the symbols is the same order
        you should supply the features when calling
        the function `f` (shape `[nrows, nfeatures]`).
        In this case, features=2 for x and y.
        The `params` in this case will be
        `jnp.array([1.0, 3.2])`. You pass these parameters
        when calling the function, which will let you change them
        and take gradients.

        Let's generate some JAX data to pass:
        ```python
        key = random.PRNGKey(0)
        X = random.normal(key, (10, 2))
        ```

        We can call the function with:
        ```python
        f(X, params)

        #> DeviceArray([-2.6080756 ,  0.72633684, -6.7557726 , -0.2963162 ,
        #                6.6014843 ,  5.032483  , -0.810931  ,  4.2520013 ,
        #                3.5427954 , -2.7479894 ], dtype=float32)
        ```

        We can take gradients with respect
        to the parameters for each row with JAX
        gradient parameters now:
        ```python
        jac_f = jax.jacobian(f, argnums=1)
        jac_f(X, params)

        #> DeviceArray([[ 0.49364874, -0.9692889 ],
        #               [ 0.8283714 , -0.0318858 ],
        #               [-0.7447336 , -1.8784496 ],
        #               [ 0.70755106, -0.3137085 ],
        #               [ 0.944834  ,  1.767703  ],
        #               [ 0.51673377,  1.4111717 ],
        #               [ 0.87347716, -0.52637756],
        #               [ 0.8760679 ,  1.0549792 ],
        #               [ 0.9961824 ,  0.79581654],
        #               [-0.88465923, -0.5822907 ]], dtype=float32)
        ```

        We can also JIT-compile our function:
        ```python
        compiled_f = jax.jit(f)
        compiled_f(X, params)

        #> DeviceArray([-2.6080756 ,  0.72633684, -6.7557726 , -0.2963162 ,
        #                6.6014843 ,  5.032483  , -0.810931  ,  4.2520013 ,
        #                3.5427954 , -2.7479894 ], dtype=float32)
        ```
    """
    parameters = []
    functional_form_text = sympy2jaxtext(equation, parameters, symbols_in)
    hash_string = 'A' + str(hash([equation, symbols_in]))
    text = f"def {hash_string}(X, parameters):\n"
    text += "    return "
    text += functional_form_text
    ldict = {}
    exec(text, globals(), ldict)
    return ldict['f'], jnp.array(parameters)