File size: 3,332 Bytes
222fbf0
 
edbcfa6
222fbf0
460af25
 
e69aea3
edbcfa6
71ed397
 
 
 
 
 
 
c6a43c4
f072863
 
 
 
 
 
 
 
460af25
 
 
 
 
 
 
 
 
 
 
 
 
 
f072863
222fbf0
 
cc248dd
222fbf0
 
 
 
71ed397
 
 
 
 
 
 
 
 
 
 
 
 
 
 
222fbf0
 
f072863
 
 
c6a43c4
f072863
 
 
 
 
 
 
e69aea3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f072863
460af25
 
 
 
c6a43c4
 
f072863
 
 
dc554ea
f072863
8614da9
 
 
f072863
 
454ec0a
f072863
 
8614da9
f072863
 
454ec0a
f072863
8614da9
f072863
 
454ec0a
f072863
 
8614da9
454ec0a
 
8614da9
f072863
 
edbcfa6
f072863
edbcfa6
222fbf0
f072863
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import io
import gradio as gr
import os
import tempfile
import numpy as np
import pandas as pd
import traceback as tb

empty_df = pd.DataFrame(
    {
        "equation": [],
        "loss": [],
        "complexity": [],
    }
)

def greet(
    file_obj: tempfile._TemporaryFileWrapper,
    col_to_fit: str,
    niterations: int,
    binary_operators: list,
    unary_operators: list,
):
    if col_to_fit == "":
        return (
            empty_df,
            "Please enter a column to predict!",
        )
    if len(binary_operators) == 0 and len(unary_operators) == 0:
        return (
            empty_df,
            "Please select at least one operator!",
        )
    if file_obj is None:
        return (
            empty_df,
            "Please upload a CSV file!",
        )
    niterations = int(niterations)
    # Need to install PySR in separate python instance:
    os.system(
        """if [ ! -d "$HOME/.julia/environments/pysr-0.9.3" ]
    then
        python -c 'import pysr; pysr.install()'
    fi"""
    )

    import pysr
    try:
        from julia.api import JuliaInfo
        info = JuliaInfo.load(julia="/usr/bin/julia")
        from julia import Main as _Main
        pysr.sr.Main = _Main
    except Exception as e:
        error_message = tb.format_exc()
        return (
            empty_df,
            error_message,
        )


    from pysr import PySRRegressor

    df = pd.read_csv(file_obj.name)
    y = np.array(df[col_to_fit])
    X = df.drop([col_to_fit], axis=1)

    model = PySRRegressor(
        update=False,
        temp_equation_file=True,
        niterations=niterations,
        binary_operators=binary_operators,
        unary_operators=unary_operators,
    )
    try:
        model.fit(X, y)
    # Catch all error:
    except Exception as e:
        error_traceback = tb.format_exc()
        if "CalledProcessError" in error_traceback:
            return (
                empty_df,
                "Could not initialize Julia. Error message:\n"
                + error_traceback,
            )
        else:
            return (
                empty_df,
                "Failed due to error:\n" + error_traceback,
            )

    df = model.equations_[["equation", "loss", "complexity"]]
    # Convert all columns to string type:
    df = df.astype(str)
    return df, "Successful."


def main():
    demo = gr.Interface(
        fn=greet,
        description="PySR Demo",
        inputs=[
            gr.inputs.File(label="Upload a CSV File"),
            gr.inputs.Textbox(label="Column to Predict", placeholder="y"),
            gr.inputs.Slider(
                minimum=1,
                maximum=1000,
                default=40,
                label="Number of iterations",
            ),
            gr.inputs.CheckboxGroup(
                choices=["+", "-", "*", "/", "^"],
                label="Binary Operators",
                default=["+", "-", "*", "/"],
            ),
            gr.inputs.CheckboxGroup(
                choices=["sin", "cos", "exp", "log"],
                label="Unary Operators",
                default=[],
            ),
        ],
        outputs=[
            "dataframe",
            gr.outputs.Textbox(label="Error Log"),
        ],
    )
    # Add file to the demo:

    demo.launch()


if __name__ == "__main__":
    main()