File size: 5,489 Bytes
cc2f913
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4854265
cc2f913
 
 
4854265
 
 
 
cc2f913
4854265
cc2f913
 
 
 
 
 
 
 
 
4854265
cc2f913
4854265
cc2f913
 
 
4854265
 
 
 
cc2f913
 
 
 
 
 
 
4854265
cc2f913
 
 
 
 
 
 
 
4854265
 
 
cc2f913
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
"""Start a hyperoptimization from a single node"""
import sys
import numpy as np
import pickle as pkl
import hyperopt
from hyperopt import hp, fmin, tpe, Trials
import eureqa


#Change the following code to your file
################################################################################
TRIALS_FOLDER = 'trials'
NUMBER_TRIALS_PER_RUN = 1

def run_trial(args):
    """Evaluate the model loss using the hyperparams in args

    :args: A dictionary containing all hyperparameters
    :returns: Dict with status and loss from cross-validation

    """

    print("Running on", args)
    for key in 'niterations npop ncyclesperiteration topn'.split(' '):
        args[key] = int(args[key])

    if args['npop'] < 50 or args['ncyclesperiteration'] < 3:
        print("Bad parameters")
        return {'status': 'ok', 'loss': np.inf}

    def handler(signum, frame):
        print("Took too long. Skipping.")
        raise ValueError("Takes too long")

    maxTime = 60
    ntrials = 1 #3
    equation_file=f'hall_of_fame_{np.random.rand():f}.csv'

    try:
        trials = []
        for i in range(1, 2):
            trial = eureqa.eureqa(
                test=f"simple{i}",
                threads=4,
                binary_operators=["plus", "mult", "pow", "div"],
                unary_operators=["cos", "exp", "sin", "log"],
                equation_file=equation_file,
                timeout=maxTime,
                **args)
            if len(trial) == 0: raise ValueError
            trials.append([np.min(trial['MSE'])])
    except ValueError:
        return {
            'status': 'ok', # or 'fail' if nan loss
            'loss': np.inf
        }

    loss = np.average(trials)
    print(args, "got", loss)

    return {
        'status': 'ok', # or 'fail' if nan loss
        'loss': loss
    }


space = {
    'niterations': hp.qlognormal('niterations', np.log(10), 0.5, 1),
    'npop': hp.qlognormal('npop', np.log(100), 0.5, 1),
    'ncyclesperiteration': hp.qlognormal('ncyclesperiteration', np.log(5000), 0.5, 1),
    'topn': hp.quniform('topn', 1, 30, 1),
    'annealing': hp.choice('annealing', [False, True]),
    'alpha': hp.lognormal('alpha', np.log(10.0), 0.5),
    'parsimony': hp.lognormal('parsimony', np.log(1e-3), 0.5),
    'fractionReplacedHof': hp.lognormal('fractionReplacedHof', np.log(0.1), 0.5),
    'fractionReplaced': hp.lognormal('fractionReplaced', np.log(0.1), 0.5),
    'weightMutateConstant': hp.lognormal('weightMutateConstant', np.log(4.0), 0.5),
    'weightMutateOperator': hp.lognormal('weightMutateOperator', np.log(0.5), 0.5),
    'weightAddNode': hp.lognormal('weightAddNode', np.log(0.5), 0.5),
    'weightDeleteNode': hp.lognormal('weightDeleteNode', np.log(0.5), 0.5),
    'weightSimplify': hp.lognormal('weightSimplify', np.log(0.05), 0.5),
    'weightRandomize': hp.lognormal('weightRandomize', np.log(0.25), 0.5),
    'weightDoNothing': hp.lognormal('weightDoNothing', np.log(1.0), 0.5),
}

################################################################################



def merge_trials(trials1, trials2_slice):
    """Merge two hyperopt trials objects

    :trials1: The primary trials object
    :trials2_slice: A slice of the trials object to be merged,
        obtained with, e.g., trials2.trials[:10]
    :returns: The merged trials object

    """
    max_tid = 0
    if len(trials1.trials) > 0:
        max_tid = max([trial['tid'] for trial in trials1.trials])

    for trial in trials2_slice:
        tid = trial['tid'] + max_tid + 1
        hyperopt_trial = Trials().new_trial_docs(
                tids=[None],
                specs=[None],
                results=[None],
                miscs=[None])
        hyperopt_trial[0] = trial
        hyperopt_trial[0]['tid'] = tid
        hyperopt_trial[0]['misc']['tid'] = tid
        for key in hyperopt_trial[0]['misc']['idxs'].keys():
            hyperopt_trial[0]['misc']['idxs'][key] = [tid]
        trials1.insert_trial_docs(hyperopt_trial) 
        trials1.refresh()
    return trials1

loaded_fnames = []
trials = None
# Run new hyperparameter trials until killed
while True:
    np.random.seed()

    # Load up all runs:
    import glob
    path = TRIALS_FOLDER + '/*.pkl'
    for fname in glob.glob(path):
        if fname in loaded_fnames:
            continue

        trials_obj = pkl.load(open(fname, 'rb'))
        n_trials = trials_obj['n']
        trials_obj = trials_obj['trials']
        if len(loaded_fnames) == 0: 
            trials = trials_obj
        else:
            print("Merging trials")
            trials = merge_trials(trials, trials_obj.trials[-n_trials:])

        loaded_fnames.append(fname)

    print("Loaded trials", len(loaded_fnames))
    if len(loaded_fnames) == 0:
        trials = Trials()

    n = NUMBER_TRIALS_PER_RUN
    try:
        best = fmin(run_trial,
            space=space,
            algo=tpe.suggest,
            max_evals=n + len(trials.trials),
            trials=trials,
            verbose=1,
            rstate=np.random.RandomState(np.random.randint(1,10**6))
            )
    except hyperopt.exceptions.AllTrialsFailed:
        continue

    print('current best', best)
    hyperopt_trial = Trials()

    # Merge with empty trials dataset:
    save_trials = merge_trials(hyperopt_trial, trials.trials[-n:])
    new_fname = TRIALS_FOLDER + '/' + str(np.random.randint(0, sys.maxsize)) + '.pkl'
    pkl.dump({'trials': save_trials, 'n': n}, open(new_fname, 'wb'))
    loaded_fnames.append(new_fname)