File size: 2,578 Bytes
222fbf0
 
edbcfa6
222fbf0
460af25
 
edbcfa6
c6a43c4
f072863
 
 
 
 
 
 
460af25
 
 
 
 
 
 
f072863
460af25
 
 
 
 
 
 
 
 
 
 
 
 
 
f072863
222fbf0
 
 
 
 
 
 
 
 
f072863
 
 
c6a43c4
f072863
 
 
 
 
 
 
 
 
460af25
 
 
 
c6a43c4
 
f072863
 
 
 
 
8614da9
 
 
f072863
 
 
 
 
8614da9
f072863
 
 
 
8614da9
f072863
 
 
 
 
8614da9
 
 
 
f072863
 
edbcfa6
f072863
edbcfa6
222fbf0
f072863
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import io
import gradio as gr
import os
import tempfile
import numpy as np
import pandas as pd


def greet(
    file_obj: tempfile._TemporaryFileWrapper,
    col_to_fit: str,
    niterations: int,
    binary_operators: list,
    unary_operators: list,
):
    empty_df = pd.DataFrame(
        {
            "equation": [],
            "loss": [],
            "complexity": [],
        }
    )
    if col_to_fit == "":
        return (
            empty_df,
            "Please enter a column to predict!",
        )
    if len(binary_operators) == 0 and len(unary_operators) == 0:
        return (
            empty_df,
            "Please select at least one operator!",
        )
    if file_obj is None:
        return (
            empty_df,
            "Please upload a CSV file!",
        )
    niterations = int(niterations)
    # Need to install PySR in separate python instance:
    os.system(
        """if [ ! -d "$HOME/.julia/environments/pysr-0.9.1" ]
    then
        python -c 'import pysr; pysr.install()'
    fi"""
    )
    from pysr import PySRRegressor

    df = pd.read_csv(file_obj.name)
    y = np.array(df[col_to_fit])
    X = df.drop([col_to_fit], axis=1)

    model = PySRRegressor(
        update=False,
        temp_equation_file=True,
        niterations=niterations,
        binary_operators=binary_operators,
        unary_operators=unary_operators,
    )
    model.fit(X, y)

    df = model.equations_[["equation", "loss", "complexity"]]
    # Convert all columns to string type:
    df = df.astype(str)
    return df, "Successful."


def main():
    demo = gr.Interface(
        fn=greet,
        description="A demo of PySR",
        inputs=[
            gr.inputs.File(label="Upload a CSV File"),
            gr.inputs.Textbox(label="Column to Predict", placeholder="y"),
            gr.inputs.Slider(
                minimum=1,
                maximum=1000,
                value=40,
                label="Number of iterations",
            ),
            gr.inputs.CheckboxGroup(
                choices=["+", "-", "*", "/", "^"],
                label="Binary Operators",
                value=["+", "-", "*", "/"],
            ),
            gr.inputs.CheckboxGroup(
                choices=["sin", "cos", "exp", "log"],
                label="Unary Operators",
                value=[],
            ),
        ],
        outputs=[
            gr.outputs.DataFrame(label="Equations"),
            gr.outputs.Textbox(label="Error Log")
        ],
    )
    # Add file to the demo:

    demo.launch()


if __name__ == "__main__":
    main()