Spaces:
Running
Running
File size: 1,843 Bytes
09a7186 4bcc280 09a7186 47ad683 4bcc280 09a7186 4bcc280 47ad683 09a7186 4bcc280 09a7186 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
import os
import re
from pathlib import Path
from typing import Any, List, TypeVar, Union
from numpy import ndarray
from sklearn.utils.validation import _check_feature_names_in # type: ignore
T = TypeVar("T", bound=Any)
ArrayLike = Union[ndarray, List[T]]
def _csv_filename_to_pkl_filename(csv_filename: Union[str, Path]) -> Union[str, Path]:
if os.path.splitext(csv_filename)[1] == ".pkl":
return csv_filename
# Assume that the csv filename is of the form "foo.csv"
assert str(csv_filename).endswith(".csv")
dirname = str(os.path.dirname(csv_filename))
basename = str(os.path.basename(csv_filename))
base = str(os.path.splitext(basename)[0])
pkl_basename = base + ".pkl"
return os.path.join(dirname, pkl_basename)
_regexp_im = re.compile(r"\b(\d+\.\d+)im\b")
_regexp_im_sci = re.compile(r"\b(\d+\.\d+)[eEfF]([+-]?\d+)im\b")
_regexp_sci = re.compile(r"\b(\d+\.\d+)[eEfF]([+-]?\d+)\b")
_apply_regexp_im = lambda x: _regexp_im.sub(r"\1j", x)
_apply_regexp_im_sci = lambda x: _regexp_im_sci.sub(r"\1e\2j", x)
_apply_regexp_sci = lambda x: _regexp_sci.sub(r"\1e\2", x)
def _preprocess_julia_floats(s: str) -> str:
if isinstance(s, str):
s = _apply_regexp_im(s)
s = _apply_regexp_im_sci(s)
s = _apply_regexp_sci(s)
return s
def _safe_check_feature_names_in(self, variable_names, generate_names=True):
"""_check_feature_names_in with compat for old versions."""
try:
return _check_feature_names_in(
self, variable_names, generate_names=generate_names
)
except TypeError:
return _check_feature_names_in(self, variable_names)
def _subscriptify(i: int) -> str:
"""Converts integer to subscript text form.
For example, 123 -> "βββ".
"""
return "".join([chr(0x2080 + int(c)) for c in str(i)])
|