File size: 1,605 Bytes
82bd48e
 
 
 
3ae1f0b
 
82bd48e
 
 
 
8bc139b
82bd48e
 
 
 
 
c835184
 
82bd48e
 
3dd70cc
 
 
 
 
82bd48e
 
 
 
 
 
 
 
3dd70cc
09f006f
82bd48e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d05f2e2
82bd48e
 
 
 
 
 
 
d05f2e2
3ae1f0b
 
82bd48e
3ae1f0b
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# Operators

## Pre-defined

All Base julia operators that take 1 or 2 scalars as input,
and output a scalar as output, are available. A selection
of these and other valid operators are stated below.

**Binary**

`+`, `-`, `*`, `/`, `^`, `greater`, `mod`, `logical_or`,
`logical_and`

**Unary**

`neg`,
`square`,
`cube`,
`exp`,
`abs`,
`log`,
`log10`,
`log2`,
`log1p`,
`sqrt`,
`sin`,
`cos`,
`tan`,
`sinh`,
`cosh`,
`tanh`,
`atan`,
`asinh`,
`acosh`,
`atanh_clip` (=atanh((x+1)%2 - 1)),
`erf`,
`erfc`,
`gamma`,
`relu`,
`round`,
`floor`,
`ceil`,
`round`,
`sign`.

## Custom

Instead of passing a predefined operator as a string,
you can define with by passing it to the `pysr` function, with, e.g.,

```python
    PySRRegressor(
        ...,
        unary_operators=["myfunction(x) = x^2"],
        binary_operators=["myotherfunction(x, y) = x^2*y"]
    )
```


Make sure that it works with
`Float32` as a datatype (for default precision, or `Float64` if you set `precision=64`). That means you need to write `1.5f3`
instead of `1.5e3`, if you write any constant numbers, or simply convert a result to `Float64(...)`.

PySR expects that operators not throw an error for any input value over the entire real line from `-3.4e38` to `+3.4e38`.
Thus, for "invalid" inputs, such as negative numbers to a `sqrt` function, you may simply return a `NaN` of the same type as the input. For example,

```julia
my_sqrt(x) = x >= 0 ? sqrt(x) : convert(typeof(x), NaN)
```

would be a valid operator. The genetic algorithm
will preferentially selection expressions which avoid
any invalid values over the training dataset.