File size: 4,217 Bytes
222fbf0
13219e6
edbcfa6
460af25
13219e6
 
 
edbcfa6
71ed397
 
 
 
 
 
 
c6a43c4
deeb73e
f072863
13219e6
f072863
 
efb57c1
f072863
 
fadaa8d
f072863
 
460af25
 
 
 
 
 
 
 
 
 
 
 
 
 
fadaa8d
 
 
 
 
 
 
 
 
 
 
 
3dc1350
 
 
 
 
 
801ce9c
fadaa8d
 
801ce9c
fadaa8d
 
3dc1350
fadaa8d
f072863
deeb73e
 
13219e6
 
 
 
 
 
a9e19e6
13219e6
 
 
 
deeb73e
13219e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6a43c4
13219e6
 
c6a43c4
f072863
 
 
ce963bc
f072863
27d64c8
 
 
f072863
 
27d64c8
6644c43
ea8fece
6644c43
27d64c8
6644c43
 
27d64c8
ea8fece
 
f072863
27d64c8
f072863
 
27d64c8
f072863
27d64c8
3dc1350
 
 
 
 
 
 
 
 
 
 
f072863
27d64c8
f072863
27d64c8
 
fadaa8d
3dc1350
f072863
8614da9
454ec0a
27d64c8
8614da9
f072863
 
edbcfa6
f072863
edbcfa6
222fbf0
f072863
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import gradio as gr
import numpy as np
import os
import pandas as pd
import pysr
import tempfile
from typing import Optional

empty_df = pd.DataFrame(
    {
        "equation": [],
        "loss": [],
        "complexity": [],
    }
)


def greet(
    file_obj: Optional[tempfile._TemporaryFileWrapper],
    col_to_fit: str,
    niterations: int,
    maxsize: int,
    binary_operators: list,
    unary_operators: list,
    force_run: bool,
):
    if col_to_fit == "":
        return (
            empty_df,
            "Please enter a column to predict!",
        )
    if len(binary_operators) == 0 and len(unary_operators) == 0:
        return (
            empty_df,
            "Please select at least one operator!",
        )
    if file_obj is None:
        return (
            empty_df,
            "Please upload a CSV file!",
        )
    # Look at some statistics of the file:
    df = pd.read_csv(file_obj.name)
    if len(df) == 0:
        return (
            empty_df,
            "The file is empty!",
        )
    if len(df.columns) == 1:
        return (
            empty_df,
            "The file has only one column!",
        )
    if col_to_fit not in df.columns:
        return (
            empty_df,
            f"The column to predict, {col_to_fit}, is not in the file!"
            f"I found {df.columns}.",
        )
    if len(df) > 10_000 and not force_run:
        return (
            empty_df,
            "You have uploaded a file with more than 10,000 rows. "
            "This will take very long to run. "
            "Please upload a subsample of the data, "
            "or check the box 'Ignore Warnings'.",
        )

    binary_operators = str(binary_operators).replace("'", '"')
    unary_operators = str(unary_operators).replace("'", '"')

    df = pd.read_csv(file_obj)
    y = np.array(df[col_to_fit])
    X = df.drop([col_to_fit], axis=1)

    model = pysr.PySRRegressor(
        bumper=True,
        maxsize=maxsize,
        niterations=niterations,
        binary_operators=binary_operators,
        unary_operators=unary_operators,
    )
    model.fit(X, y)

    df = model.equations_[["equation", "loss", "complexity"]]
    # Convert all columns to string type:
    df = df.astype(str)
    msg = (
            "Success!\n"
            f"You may run the model locally (faster) with "
            f"the following parameters:"
            +f"""
model = PySRRegressor(
    niterations={niterations},
    binary_operators={str(binary_operators)},
    unary_operators={str(unary_operators)},
    maxsize={maxsize},
)
model.fit(X, y)""")

    df.to_csv("pysr_output.csv", index=False)
    return df, msg

def main():
    demo = gr.Interface(
        fn=greet,
        description="Symbolic Regression with PySR. Watch search progress by following the logs.",
        inputs=[
            gr.File(label="Upload a CSV File"),
            gr.Textbox(label="Column to Predict", placeholder="y"),
            gr.Slider(
                minimum=1,
                maximum=1000,
                value=40,
                label="Number of Iterations",
                step=1,
            ),
            gr.Slider(
                minimum=7,
                maximum=35,
                value=20,
                label="Maximum Complexity",
                step=1,
            ),
            gr.CheckboxGroup(
                choices=["+", "-", "*", "/", "^"],
                label="Binary Operators",
                value=["+", "-", "*", "/"],
            ),
            gr.CheckboxGroup(
                choices=[
                    "sin",
                    "cos",
                    "exp",
                    "log",
                    "square",
                    "cube",
                    "sqrt",
                    "abs",
                    "tan",
                ],
                label="Unary Operators",
                value=[],
            ),
            gr.Checkbox(
                value=False,
                label="Ignore Warnings",
            ),
        ],
        outputs=[
            "dataframe",
            gr.Textbox(label="Error Log"),
        ],
    )
    # Add file to the demo:

    demo.launch()


if __name__ == "__main__":
    main()