Spaces:
Sleeping
Sleeping
include("hyperparams.jl") | |
include("dataset.jl") | |
import Optim | |
const maxdegree = 2 | |
const actualMaxsize = maxsize + maxdegree | |
id = (x,) -> x | |
const nuna = size(unaops)[1] | |
const nbin = size(binops)[1] | |
const nops = nuna + nbin | |
const nvar = size(X)[2]; | |
function debug(verbosity, string...) | |
verbosity > 0 ? println(string...) : nothing | |
end | |
function giveBirth()::Int32 | |
return round(Int32, 1e3*(time()-1.6e9)) | |
end | |
# Define a serialization format for the symbolic equations: | |
mutable struct Node | |
#Holds operators, variables, constants in a tree | |
degree::Integer #0 for constant/variable, 1 for cos/sin, 2 for +/* etc. | |
val::Union{Float32, Integer} #Either const value, or enumerates variable | |
constant::Bool #false if variable | |
op::Function #enumerates operator (for degree=1,2) | |
l::Union{Node, Nothing} | |
r::Union{Node, Nothing} | |
Node(val::Float32) = new(0, val, true, id, nothing, nothing) | |
Node(val::Integer) = new(0, val, false, id, nothing, nothing) | |
Node(op, l::Node) = new(1, 0.0f0, false, op, l, nothing) | |
Node(op, l::Union{Float32, Integer}) = new(1, 0.0f0, false, op, Node(l), nothing) | |
Node(op, l::Node, r::Node) = new(2, 0.0f0, false, op, l, r) | |
#Allow to pass the leaf value without additional node call: | |
Node(op, l::Union{Float32, Integer}, r::Node) = new(2, 0.0f0, false, op, Node(l), r) | |
Node(op, l::Node, r::Union{Float32, Integer}) = new(2, 0.0f0, false, op, l, Node(r)) | |
Node(op, l::Union{Float32, Integer}, r::Union{Float32, Integer}) = new(2, 0.0f0, false, op, Node(l), Node(r)) | |
end | |
# Evaluate a symbolic equation: | |
function evalTree(tree::Node, x::Array{Float32, 1}=Float32[])::Float32 | |
if tree.degree == 0 | |
if tree.constant | |
return tree.val | |
else | |
return x[tree.val] | |
end | |
elseif tree.degree == 1 | |
return tree.op(evalTree(tree.l, x)) | |
else | |
return tree.op(evalTree(tree.l, x), evalTree(tree.r, x)) | |
end | |
end | |
# Count the operators, constants, variables in an equation | |
function countNodes(tree::Node)::Integer | |
if tree.degree == 0 | |
return 1 | |
elseif tree.degree == 1 | |
return 1 + countNodes(tree.l) | |
else | |
return 1 + countNodes(tree.l) + countNodes(tree.r) | |
end | |
end | |
# Convert an equation to a string | |
function stringTree(tree::Node)::String | |
if tree.degree == 0 | |
if tree.constant | |
return string(tree.val) | |
else | |
return "x$(tree.val)" | |
end | |
elseif tree.degree == 1 | |
return "$(tree.op)($(stringTree(tree.l)))" | |
else | |
return "$(tree.op)($(stringTree(tree.l)), $(stringTree(tree.r)))" | |
end | |
end | |
# Print an equation | |
function printTree(tree::Node) | |
println(stringTree(tree)) | |
end | |
# Return a random node from the tree | |
function randomNode(tree::Node)::Node | |
if tree.degree == 0 | |
return tree | |
end | |
a = countNodes(tree) | |
b = 0 | |
c = 0 | |
if tree.degree >= 1 | |
b = countNodes(tree.l) | |
end | |
if tree.degree == 2 | |
c = countNodes(tree.r) | |
end | |
i = rand(1:1+b+c) | |
if i <= b | |
return randomNode(tree.l) | |
elseif i == b + 1 | |
return tree | |
end | |
return randomNode(tree.r) | |
end | |
# Count the number of unary operators in the equation | |
function countUnaryOperators(tree::Node)::Integer | |
if tree.degree == 0 | |
return 0 | |
elseif tree.degree == 1 | |
return 1 + countUnaryOperators(tree.l) | |
else | |
return 0 + countUnaryOperators(tree.l) + countUnaryOperators(tree.r) | |
end | |
end | |
# Count the number of binary operators in the equation | |
function countBinaryOperators(tree::Node)::Integer | |
if tree.degree == 0 | |
return 0 | |
elseif tree.degree == 1 | |
return 0 + countBinaryOperators(tree.l) | |
else | |
return 1 + countBinaryOperators(tree.l) + countBinaryOperators(tree.r) | |
end | |
end | |
# Count the number of operators in the equation | |
function countOperators(tree::Node)::Integer | |
return countUnaryOperators(tree) + countBinaryOperators(tree) | |
end | |
# Randomly convert an operator into another one (binary->binary; | |
# unary->unary) | |
function mutateOperator(tree::Node)::Node | |
if countOperators(tree) == 0 | |
return tree | |
end | |
node = randomNode(tree) | |
while node.degree == 0 | |
node = randomNode(tree) | |
end | |
if node.degree == 1 | |
node.op = unaops[rand(1:length(unaops))] | |
else | |
node.op = binops[rand(1:length(binops))] | |
end | |
return tree | |
end | |
# Count the number of constants in an equation | |
function countConstants(tree::Node)::Integer | |
if tree.degree == 0 | |
return convert(Integer, tree.constant) | |
elseif tree.degree == 1 | |
return 0 + countConstants(tree.l) | |
else | |
return 0 + countConstants(tree.l) + countConstants(tree.r) | |
end | |
end | |
# Randomly perturb a constant | |
function mutateConstant( | |
tree::Node, T::Float32, | |
probNegate::Float32=0.01f0)::Node | |
# T is between 0 and 1. | |
if countConstants(tree) == 0 | |
return tree | |
end | |
node = randomNode(tree) | |
while node.degree != 0 || node.constant == false | |
node = randomNode(tree) | |
end | |
bottom = 0.1f0 | |
maxChange = T + 1.0f0 + bottom | |
factor = maxChange^Float32(rand()) | |
makeConstBigger = rand() > 0.5 | |
if makeConstBigger | |
node.val *= factor | |
else | |
node.val /= factor | |
end | |
if rand() > probNegate | |
node.val *= -1 | |
end | |
return tree | |
end | |
# Evaluate an equation over an array of datapoints | |
function evalTreeArray(tree::Node)::Array{Float32, 1} | |
len = size(X)[1] | |
if tree.degree == 0 | |
if tree.constant | |
return ones(Float32, len) .* tree.val | |
else | |
return ones(Float32, len) .* X[:, tree.val] | |
end | |
elseif tree.degree == 1 | |
return tree.op.(evalTreeArray(tree.l)) | |
else | |
return tree.op.(evalTreeArray(tree.l), evalTreeArray(tree.r)) | |
end | |
end | |
# Sum of square error between two arrays | |
function SSE(x::Array{Float32}, y::Array{Float32})::Float32 | |
return sum(((cx,)->cx^2).(x - y)) | |
end | |
# Mean of square error between two arrays | |
function MSE(x::Array{Float32}, y::Array{Float32})::Float32 | |
return SSE(x, y)/size(x)[1] | |
end | |
# Score an equation | |
function scoreFunc(tree::Node)::Float32 | |
try | |
return MSE(evalTreeArray(tree), y) + countNodes(tree)*parsimony | |
catch error | |
if isa(error, DomainError) | |
return 1f9 | |
else | |
throw(error) | |
end | |
end | |
end | |
# Add a random unary/binary operation to the end of a tree | |
function appendRandomOp(tree::Node)::Node | |
node = randomNode(tree) | |
while node.degree != 0 | |
node = randomNode(tree) | |
end | |
choice = rand() | |
makeNewBinOp = choice < nbin/nops | |
if rand() > 0.5 | |
left = Float32(randn()) | |
else | |
left = rand(1:nvar) | |
end | |
if rand() > 0.5 | |
right = Float32(randn()) | |
else | |
right = rand(1:nvar) | |
end | |
if makeNewBinOp | |
newnode = Node( | |
binops[rand(1:length(binops))], | |
left, | |
right | |
) | |
else | |
newnode = Node( | |
unaops[rand(1:length(unaops))], | |
left | |
) | |
end | |
node.l = newnode.l | |
node.r = newnode.r | |
node.op = newnode.op | |
node.degree = newnode.degree | |
node.val = newnode.val | |
node.constant = newnode.constant | |
return tree | |
end | |
# Select a random node, and replace it an the subtree | |
# with a variable or constant | |
function deleteRandomOp(tree::Node)::Node | |
node = randomNode(tree) | |
# Can "delete" variable or constant too | |
if rand() > 0.5 | |
val = Float32(randn()) | |
else | |
val = rand(1:nvar) | |
end | |
newnode = Node(val) | |
node.l = newnode.l | |
node.r = newnode.r | |
node.op = newnode.op | |
node.degree = newnode.degree | |
node.val = newnode.val | |
node.constant = newnode.constant | |
return tree | |
end | |
# Simplify tree | |
function simplifyTree(tree::Node)::Node | |
if tree.degree == 1 | |
tree.l = simplifyTree(tree.l) | |
if tree.l.degree == 0 && tree.l.constant | |
return Node(tree.op(tree.l.val)) | |
end | |
elseif tree.degree == 2 | |
tree.r = simplifyTree(tree.r) | |
tree.l = simplifyTree(tree.l) | |
constantsBelow = ( | |
tree.l.degree == 0 && tree.l.constant && | |
tree.r.degree == 0 && tree.r.constant | |
) | |
if constantsBelow | |
return Node(tree.op(tree.l.val, tree.r.val)) | |
end | |
end | |
return tree | |
end | |
# Go through one simulated annealing mutation cycle | |
# exp(-delta/T) defines probability of accepting a change | |
function iterate( | |
tree::Node, T::Float32, | |
alpha::Float32=1.0f0; | |
annealing::Bool=true | |
)::Node | |
prev = tree | |
tree = deepcopy(tree) | |
mutationChoice = rand() | |
weight_for_constant = min(8, countConstants(tree)) | |
weights = [weight_for_constant, 1, 1, 1, 0.1, 0.5, 2] .* 1.0 | |
weights /= sum(weights) | |
cweights = cumsum(weights) | |
n = countNodes(tree) | |
if mutationChoice < cweights[1] | |
tree = mutateConstant(tree, T) | |
elseif mutationChoice < cweights[2] | |
tree = mutateOperator(tree) | |
elseif mutationChoice < cweights[3] && n < maxsize | |
tree = appendRandomOp(tree) | |
elseif mutationChoice < cweights[4] | |
tree = deleteRandomOp(tree) | |
elseif mutationChoice < cweights[5] | |
tree = simplifyTree(tree) # Sometimes we simplify tree | |
return tree | |
elseif mutationChoice < cweights[6] | |
tree = genRandomTree(5) # Sometimes we simplify tree | |
else | |
return tree | |
end | |
if annealing | |
beforeLoss = scoreFunc(prev) | |
afterLoss = scoreFunc(tree) | |
delta = afterLoss - beforeLoss | |
probChange = exp(-delta/(T*alpha)) | |
if isnan(afterLoss) || probChange < rand() | |
return deepcopy(prev) | |
end | |
end | |
return tree | |
end | |
# Create a random equation by appending random operators | |
function genRandomTree(length::Integer)::Node | |
tree = Node(1.0f0) | |
for i=1:length | |
tree = appendRandomOp(tree) | |
end | |
return tree | |
end | |
# Define a member of population by equation, score, and age | |
mutable struct PopMember | |
tree::Node | |
score::Float32 | |
birth::Int32 | |
PopMember(t::Node) = new(t, scoreFunc(t), giveBirth()) | |
PopMember(t::Node, score::Float32) = new(t, score, giveBirth()) | |
end | |
# A list of members of the population, with easy constructors, | |
# which allow for random generation of new populations | |
mutable struct Population | |
members::Array{PopMember, 1} | |
n::Integer | |
Population(pop::Array{PopMember, 1}) = new(pop, size(pop)[1]) | |
Population(npop::Integer) = new([PopMember(genRandomTree(3)) for i=1:npop], npop) | |
Population(npop::Integer, nlength::Integer) = new([PopMember(genRandomTree(nlength)) for i=1:npop], npop) | |
end | |
# Sample 10 random members of the population, and make a new one | |
function samplePop(pop::Population)::Population | |
idx = rand(1:pop.n, ns) | |
return Population(pop.members[idx]) | |
end | |
# Sample the population, and get the best member from that sample | |
function bestOfSample(pop::Population)::PopMember | |
sample = samplePop(pop) | |
best_idx = argmin([sample.members[member].score for member=1:sample.n]) | |
return sample.members[best_idx] | |
end | |
# Return best 10 examples | |
function bestSubPop(pop::Population; topn::Integer=10)::Population | |
best_idx = sortperm([pop.members[member].score for member=1:pop.n]) | |
return Population(pop.members[best_idx[1:topn]]) | |
end | |
# Mutate the best sampled member of the population | |
function iterateSample( | |
pop::Population, T::Float32; | |
annealing::Bool=true)::PopMember | |
allstar = bestOfSample(pop) | |
new = iterate( | |
allstar.tree, T, | |
alpha, annealing=annealing) | |
allstar.tree = new | |
allstar.score = scoreFunc(new) | |
allstar.birth = giveBirth() | |
return allstar | |
end | |
# Pass through the population several times, replacing the oldest | |
# with the fittest of a small subsample | |
function regEvolCycle( | |
pop::Population, T::Float32; | |
annealing::Bool=true)::Population | |
for i=1:Integer(pop.n/ns) | |
baby = iterateSample(pop, T, annealing=annealing) | |
#printTree(baby.tree) | |
oldest = argmin([pop.members[member].birth for member=1:pop.n]) | |
pop.members[oldest] = baby | |
end | |
return pop | |
end | |
# Cycle through regularized evolution many times, | |
# printing the fittest equation every 10% through | |
function run( | |
pop::Population, | |
ncycles::Integer, | |
annealing::Bool=false; | |
verbosity::Integer=0 | |
)::Population | |
allT = LinRange(1.0f0, 0.0f0, ncycles) | |
for iT in 1:size(allT)[1] | |
if annealing | |
pop = regEvolCycle(pop, allT[iT], annealing=true) | |
else | |
pop = regEvolCycle(pop, 1.0f0, annealing=true) | |
end | |
if verbosity > 0 && (iT % verbosity == 0) | |
bestPops = bestSubPop(pop) | |
bestCurScoreIdx = argmin([bestPops.members[member].score for member=1:bestPops.n]) | |
bestCurScore = bestPops.members[bestCurScoreIdx].score | |
debug(verbosity, bestCurScore, " is the score for ", stringTree(bestPops.members[bestCurScoreIdx].tree)) | |
end | |
end | |
return pop | |
end | |
# Get all the constants from a tree | |
function getConstants(tree::Node)::Array{Float32, 1} | |
if tree.degree == 0 | |
if tree.constant | |
return [tree.val] | |
else | |
return Float32[] | |
end | |
elseif tree.degree == 1 | |
return getConstants(tree.l) | |
else | |
both = [getConstants(tree.l), getConstants(tree.r)] | |
return [constant for subtree in both for constant in subtree] | |
end | |
end | |
# Set all the constants inside a tree | |
function setConstants(tree::Node, constants::Array{Float32, 1}) | |
if tree.degree == 0 | |
if tree.constant | |
tree.val = constants[1] | |
end | |
elseif tree.degree == 1 | |
setConstants(tree.l, constants) | |
else | |
numberLeft = countConstants(tree.l) | |
setConstants(tree.l, constants) | |
setConstants(tree.r, constants[numberLeft+1:end]) | |
end | |
end | |
# Proxy function for optimization | |
function optFunc(x::Array{Float32, 1}, tree::Node)::Float32 | |
setConstants(tree, x) | |
return scoreFunc(tree) | |
end | |
# Use Nelder-Mead to optimize the constants in an equation | |
function optimizeConstants(member::PopMember)::PopMember | |
nconst = countConstants(member.tree) | |
if nconst == 0 | |
return member | |
end | |
x0 = getConstants(member.tree) | |
f(x::Array{Float32,1})::Float32 = optFunc(x, member.tree) | |
if size(x0)[1] == 1 | |
result = Optim.optimize(f, x0, Optim.Newton(), Optim.Options(iterations=20)) | |
else | |
result = Optim.optimize(f, x0, Optim.NelderMead(), Optim.Options(iterations=100)) | |
end | |
if Optim.converged(result) | |
setConstants(member.tree, result.minimizer) | |
member.score = convert(Float32, result.minimum) | |
member.birth = giveBirth() | |
else | |
setConstants(member.tree, x0) | |
end | |
return member | |
end | |