Spaces:
Sleeping
Sleeping
import os | |
import sys | |
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter | |
from collections import namedtuple | |
import pathlib | |
import numpy as np | |
import pandas as pd | |
import sympy | |
from sympy import sympify, Symbol, lambdify | |
import subprocess | |
import tempfile | |
import shutil | |
from pathlib import Path | |
from datetime import datetime | |
import warnings | |
global_state = dict( | |
equation_file='hall_of_fame.csv', | |
n_features=None, | |
variable_names=[], | |
extra_sympy_mappings={}, | |
extra_torch_mappings={}, | |
extra_jax_mappings={}, | |
output_jax_format=False, | |
output_torch_format=False, | |
multioutput=False, | |
nout=1, | |
selection=None | |
) | |
sympy_mappings = { | |
'div': lambda x, y : x/y, | |
'mult': lambda x, y : x*y, | |
'sqrt_abs':lambda x : sympy.sqrt(abs(x)), | |
'square':lambda x : x**2, | |
'cube': lambda x : x**3, | |
'plus': lambda x, y : x + y, | |
'sub': lambda x, y : x - y, | |
'neg': lambda x : -x, | |
'pow': lambda x, y : abs(x)**y, | |
'cos': lambda x : sympy.cos(x), | |
'sin': lambda x : sympy.sin(x), | |
'tan': lambda x : sympy.tan(x), | |
'cosh': lambda x : sympy.cosh(x), | |
'sinh': lambda x : sympy.sinh(x), | |
'tanh': lambda x : sympy.tanh(x), | |
'exp': lambda x : sympy.exp(x), | |
'acos': lambda x : sympy.acos(x), | |
'asin': lambda x : sympy.asin(x), | |
'atan': lambda x : sympy.atan(x), | |
'acosh':lambda x : sympy.acosh(abs(x) + 1), | |
'acosh_abs':lambda x : sympy.acosh(abs(x) + 1), | |
'asinh':lambda x : sympy.asinh(x), | |
'atanh':lambda x : sympy.atanh(sympy.Mod(x+1, 2)-1), | |
'atanh_clip':lambda x : sympy.atanh(sympy.Mod(x+1, 2)-1), | |
'abs': lambda x : abs(x), | |
'mod': lambda x, y : sympy.Mod(x, y), | |
'erf': lambda x : sympy.erf(x), | |
'erfc': lambda x : sympy.erfc(x), | |
'log_abs': lambda x : sympy.log(abs(x)), | |
'log10_abs':lambda x : sympy.log(abs(x), 10), | |
'log2_abs': lambda x : sympy.log(abs(x), 2), | |
'log1p_abs': lambda x : sympy.log(abs(x) + 1), | |
'floor': lambda x : sympy.floor(x), | |
'ceil': lambda x : sympy.ceil(x), | |
'sign': lambda x : sympy.sign(x), | |
'gamma': lambda x : sympy.gamma(x), | |
} | |
class CallableEquation(object): | |
"""Simple wrapper for numpy lambda functions built with sympy""" | |
def __init__(self, sympy_symbols, eqn, selection=None): | |
self._sympy = eqn | |
self._sympy_symbols = sympy_symbols | |
self._selection = selection | |
self._lambda = lambdify(sympy_symbols, eqn) | |
def __repr__(self): | |
return f"PySRFunction(X=>{self._sympy})" | |
def __call__(self, X): | |
if self._selection is not None: | |
return self._lambda(*X[:, self._selection].T) | |
else: | |
return self._lambda(*X.T) | |
def pysr(X, y, weights=None, | |
binary_operators=None, | |
unary_operators=None, | |
procs=4, | |
loss='L2DistLoss()', | |
populations=20, | |
niterations=100, | |
ncyclesperiteration=300, | |
alpha=0.1, | |
annealing=False, | |
fractionReplaced=0.10, | |
fractionReplacedHof=0.10, | |
npop=1000, | |
parsimony=1e-4, | |
migration=True, | |
hofMigration=True, | |
shouldOptimizeConstants=True, | |
topn=10, | |
weightAddNode=1, | |
weightInsertNode=3, | |
weightDeleteNode=3, | |
weightDoNothing=1, | |
weightMutateConstant=10, | |
weightMutateOperator=1, | |
weightRandomize=1, | |
weightSimplify=0.01, | |
perturbationFactor=1.0, | |
timeout=None, | |
extra_sympy_mappings=None, | |
extra_torch_mappings=None, | |
extra_jax_mappings=None, | |
equation_file=None, | |
verbosity=1e9, | |
progress=True, | |
maxsize=20, | |
fast_cycle=False, | |
maxdepth=None, | |
variable_names=None, | |
batching=False, | |
batchSize=50, | |
select_k_features=None, | |
warmupMaxsizeBy=0.0, | |
constraints=None, | |
useFrequency=True, | |
tempdir=None, | |
delete_tempfiles=True, | |
julia_optimization=3, | |
julia_project=None, | |
user_input=True, | |
update=True, | |
temp_equation_file=False, | |
output_jax_format=False, | |
output_torch_format=False, | |
optimizer_algorithm="BFGS", | |
optimizer_nrestarts=3, | |
optimize_probability=1.0, | |
optimizer_iterations=10 | |
): | |
"""Run symbolic regression to fit f(X[i, :]) ~ y[i] for all i. | |
Note: most default parameters have been tuned over several example | |
equations, but you should adjust `niterations`, | |
`binary_operators`, `unary_operators` to your requirements. | |
:param X: np.ndarray or pandas.DataFrame, 2D array. Rows are examples, | |
columns are features. If pandas DataFrame, the columns are used | |
for variable names (so make sure they don't contain spaces). | |
:param y: np.ndarray, 1D array (rows are examples) or 2D array (rows | |
are examples, columns are outputs). Putting in a 2D array will | |
trigger a search for equations for each feature of y. | |
:param weights: np.ndarray, same shape as y. Each element is how to | |
weight the mean-square-error loss for that particular element | |
of y. | |
:param binary_operators: list, List of strings giving the binary operators | |
in Julia's Base. Default is ["+", "-", "*", "/",]. | |
:param unary_operators: list, Same but for operators taking a single scalar. | |
Default is []. | |
:param procs: int, Number of processes (=number of populations running). | |
:param loss: str, String of Julia code specifying the loss function. | |
Can either be a loss from LossFunctions.jl, or your own | |
loss written as a function. Examples of custom written losses | |
include: `myloss(x, y) = abs(x-y)` for non-weighted, or | |
`myloss(x, y, w) = w*abs(x-y)` for weighted. | |
Among the included losses, these are as follows. Regression: | |
`LPDistLoss{P}()`, `L1DistLoss()`, `L2DistLoss()` (mean square), | |
`LogitDistLoss()`, `HuberLoss(d)`, `L1EpsilonInsLoss(ϵ)`, | |
`L2EpsilonInsLoss(ϵ)`, `PeriodicLoss(c)`, `QuantileLoss(τ)`. | |
Classification: `ZeroOneLoss()`, `PerceptronLoss()`, `L1HingeLoss()`, | |
`SmoothedL1HingeLoss(γ)`, `ModifiedHuberLoss()`, `L2MarginLoss()`, | |
`ExpLoss()`, `SigmoidLoss()`, `DWDMarginLoss(q)`. | |
:param populations: int, Number of populations running. | |
:param niterations: int, Number of iterations of the algorithm to run. The best | |
equations are printed, and migrate between populations, at the | |
end of each. | |
:param ncyclesperiteration: int, Number of total mutations to run, per 10 | |
samples of the population, per iteration. | |
:param alpha: float, Initial temperature. | |
:param annealing: bool, Whether to use annealing. You should (and it is default). | |
:param fractionReplaced: float, How much of population to replace with migrating | |
equations from other populations. | |
:param fractionReplacedHof: float, How much of population to replace with migrating | |
equations from hall of fame. | |
:param npop: int, Number of individuals in each population | |
:param parsimony: float, Multiplicative factor for how much to punish complexity. | |
:param migration: bool, Whether to migrate. | |
:param hofMigration: bool, Whether to have the hall of fame migrate. | |
:param shouldOptimizeConstants: bool, Whether to numerically optimize | |
constants (Nelder-Mead/Newton) at the end of each iteration. | |
:param topn: int, How many top individuals migrate from each population. | |
:param perturbationFactor: float, Constants are perturbed by a max | |
factor of (perturbationFactor*T + 1). Either multiplied by this | |
or divided by this. | |
:param weightAddNode: float, Relative likelihood for mutation to add a node | |
:param weightInsertNode: float, Relative likelihood for mutation to insert a node | |
:param weightDeleteNode: float, Relative likelihood for mutation to delete a node | |
:param weightDoNothing: float, Relative likelihood for mutation to leave the individual | |
:param weightMutateConstant: float, Relative likelihood for mutation to change | |
the constant slightly in a random direction. | |
:param weightMutateOperator: float, Relative likelihood for mutation to swap | |
an operator. | |
:param weightRandomize: float, Relative likelihood for mutation to completely | |
delete and then randomly generate the equation | |
:param weightSimplify: float, Relative likelihood for mutation to simplify | |
constant parts by evaluation | |
:param timeout: float, Time in seconds to timeout search | |
:param equation_file: str, Where to save the files (.csv separated by |) | |
:param verbosity: int, What verbosity level to use. 0 means minimal print statements. | |
:param progress: bool, Whether to use a progress bar instead of printing to stdout. | |
:param maxsize: int, Max size of an equation. | |
:param maxdepth: int, Max depth of an equation. You can use both maxsize and maxdepth. | |
maxdepth is by default set to = maxsize, which means that it is redundant. | |
:param fast_cycle: bool, (experimental) - batch over population subsamples. This | |
is a slightly different algorithm than regularized evolution, but does cycles | |
15% faster. May be algorithmically less efficient. | |
:param variable_names: list, a list of names for the variables, other | |
than "x0", "x1", etc. | |
:param batching: bool, whether to compare population members on small batches | |
during evolution. Still uses full dataset for comparing against | |
hall of fame. | |
:param batchSize: int, the amount of data to use if doing batching. | |
:param select_k_features: (None, int), whether to run feature selection in | |
Python using random forests, before passing to the symbolic regression | |
code. None means no feature selection; an int means select that many | |
features. | |
:param warmupMaxsizeBy: float, whether to slowly increase max size from | |
a small number up to the maxsize (if greater than 0). | |
If greater than 0, says the fraction of training time at which | |
the current maxsize will reach the user-passed maxsize. | |
:param constraints: dict of int (unary) or 2-tuples (binary), | |
this enforces maxsize constraints on the individual | |
arguments of operators. E.g., `'pow': (-1, 1)` | |
says that power laws can have any complexity left argument, but only | |
1 complexity exponent. Use this to force more interpretable solutions. | |
:param useFrequency: bool, whether to measure the frequency of complexities, | |
and use that instead of parsimony to explore equation space. Will | |
naturally find equations of all complexities. | |
:param julia_optimization: int, Optimization level (0, 1, 2, 3) | |
:param tempdir: str or None, directory for the temporary files | |
:param delete_tempfiles: bool, whether to delete the temporary files after finishing | |
:param julia_project: str or None, a Julia environment location containing | |
a Project.toml (and potentially the source code for SymbolicRegression.jl). | |
Default gives the Python package directory, where a Project.toml file | |
should be present from the install. | |
:param user_input: Whether to ask for user input or not for installing (to | |
be used for automated scripts). Will choose to install when asked. | |
:param update: Whether to automatically update Julia packages. | |
:param temp_equation_file: Whether to put the hall of fame file in | |
the temp directory. Deletion is then controlled with the | |
delete_tempfiles argument. | |
:param output_jax_format: Whether to create a 'jax_format' column in the output, | |
containing jax-callable functions and the default parameters in a jax array. | |
:param output_torch_format: Whether to create a 'torch_format' column in the output, | |
containing a torch module with trainable parameters. | |
:returns: pd.DataFrame or list, Results dataframe, | |
giving complexity, MSE, and equations (as strings), as well as functional | |
forms. If list, each element corresponds to a dataframe of equations | |
for each output. | |
""" | |
if binary_operators is None: | |
binary_operators = '+ * - /'.split(' ') | |
if unary_operators is None: | |
unary_operators = [] | |
if extra_sympy_mappings is None: | |
extra_sympy_mappings = {} | |
if variable_names is None: | |
variable_names = [] | |
if constraints is None: | |
constraints = {} | |
assert optimizer_algorithm in ['NelderMead', 'BFGS'] | |
if isinstance(X, pd.DataFrame): | |
variable_names = list(X.columns) | |
X = np.array(X) | |
use_custom_variable_names = (len(variable_names) != 0) | |
if len(X.shape) == 1: | |
X = X[:, None] | |
_check_assertions(X, binary_operators, unary_operators, | |
use_custom_variable_names, variable_names, weights, y) | |
_check_for_julia_installation() | |
if len(X) > 10000 and not batching: | |
warnings.warn("Note: you are running with more than 10,000 datapoints. You should consider turning on batching (https://pysr.readthedocs.io/en/latest/docs/options/#batching). You should also reconsider if you need that many datapoints. Unless you have a large amount of noise (in which case you should smooth your dataset first), generally < 10,000 datapoints is enough to find a functional form with symbolic regression. More datapoints will lower the search speed.") | |
if maxsize > 40: | |
warnings.warn("Note: Using a large maxsize for the equation search will be exponentially slower and use significant memory. You should consider turning `useFrequency` to False, and perhaps use `warmupMaxsizeBy`.") | |
X, variable_names, selection = _handle_feature_selection( | |
X, select_k_features, | |
use_custom_variable_names, variable_names, y | |
) | |
if maxdepth is None: | |
maxdepth = maxsize | |
if isinstance(binary_operators, str): | |
binary_operators = [binary_operators] | |
if isinstance(unary_operators, str): | |
unary_operators = [unary_operators] | |
if len(y.shape) == 1 or (len(y.shape) == 2 and y.shape[1] == 1): | |
multioutput = False | |
nout = 1 | |
y = y.reshape(-1) | |
elif len(y.shape) == 2: | |
multioutput = True | |
nout = y.shape[1] | |
else: | |
raise NotImplementedError("y shape not supported!") | |
kwargs = dict(X=X, y=y, weights=weights, | |
alpha=alpha, annealing=annealing, batchSize=batchSize, | |
batching=batching, binary_operators=binary_operators, | |
fast_cycle=fast_cycle, | |
fractionReplaced=fractionReplaced, | |
ncyclesperiteration=ncyclesperiteration, | |
niterations=niterations, npop=npop, topn=topn, | |
verbosity=verbosity, progress=progress, update=update, | |
julia_optimization=julia_optimization, timeout=timeout, | |
fractionReplacedHof=fractionReplacedHof, | |
hofMigration=hofMigration, maxdepth=maxdepth, | |
maxsize=maxsize, migration=migration, | |
optimizer_algorithm=optimizer_algorithm, | |
optimizer_nrestarts=optimizer_nrestarts, | |
optimize_probability=optimize_probability, | |
optimizer_iterations=optimizer_iterations, | |
parsimony=parsimony, perturbationFactor=perturbationFactor, | |
populations=populations, procs=procs, | |
shouldOptimizeConstants=shouldOptimizeConstants, | |
unary_operators=unary_operators, useFrequency=useFrequency, | |
use_custom_variable_names=use_custom_variable_names, | |
variable_names=variable_names, warmupMaxsizeBy=warmupMaxsizeBy, | |
weightAddNode=weightAddNode, | |
weightDeleteNode=weightDeleteNode, | |
weightDoNothing=weightDoNothing, | |
weightInsertNode=weightInsertNode, | |
weightMutateConstant=weightMutateConstant, | |
weightMutateOperator=weightMutateOperator, | |
weightRandomize=weightRandomize, | |
weightSimplify=weightSimplify, | |
constraints=constraints, | |
extra_sympy_mappings=extra_sympy_mappings, | |
extra_jax_mappings=extra_jax_mappings, | |
extra_torch_mappings=extra_torch_mappings, | |
julia_project=julia_project, loss=loss, | |
output_jax_format=output_jax_format, | |
output_torch_format=output_torch_format, | |
selection=selection, | |
multioutput=multioutput, nout=nout) | |
kwargs = {**_set_paths(tempdir), **kwargs} | |
if temp_equation_file: | |
equation_file = kwargs['tmpdir'] / f'hall_of_fame.csv' | |
elif equation_file is None: | |
date_time = datetime.now().strftime("%Y-%m-%d_%H%M%S.%f")[:-3] | |
equation_file = 'hall_of_fame_' + date_time + '.csv' | |
kwargs = {**dict(equation_file=equation_file), **kwargs} | |
pkg_directory = kwargs['pkg_directory'] | |
manifest_file = None | |
if kwargs['julia_project'] is not None: | |
manifest_filepath = Path(kwargs['julia_project']) / 'Manifest.toml' | |
else: | |
manifest_filepath = pkg_directory / 'Manifest.toml' | |
kwargs['need_install'] = False | |
if not (manifest_filepath).is_file(): | |
kwargs['need_install'] = (not user_input) or _yesno("I will install Julia packages using PySR's Project.toml file. OK?") | |
if kwargs['need_install']: | |
print("OK. I will install at launch.") | |
assert update | |
kwargs['def_hyperparams'] = _create_inline_operators(**kwargs) | |
_handle_constraints(**kwargs) | |
kwargs['constraints_str'] = _make_constraints_str(**kwargs) | |
kwargs['def_hyperparams'] = _make_hyperparams_julia_str(**kwargs) | |
kwargs['def_datasets'] = _make_datasets_julia_str(**kwargs) | |
_create_julia_files(**kwargs) | |
_final_pysr_process(**kwargs) | |
_set_globals(**kwargs) | |
equations = get_hof(**kwargs) | |
if delete_tempfiles: | |
shutil.rmtree(kwargs['tmpdir']) | |
return equations | |
def _set_globals(X, **kwargs): | |
global global_state | |
global_state['n_features'] = X.shape[1] | |
for key, value in kwargs.items(): | |
if key in global_state: | |
global_state[key] = value | |
def _final_pysr_process(julia_optimization, runfile_filename, timeout, **kwargs): | |
command = [ | |
f'julia', f'-O{julia_optimization:d}', | |
str(runfile_filename), | |
] | |
if timeout is not None: | |
command = [f'timeout', f'{timeout}'] + command | |
_cmd_runner(command, **kwargs) | |
def _cmd_runner(command, **kwargs): | |
if kwargs['verbosity'] > 0: | |
print("Running on", ' '.join(command)) | |
process = subprocess.Popen(command, stdout=subprocess.PIPE, bufsize=-1) | |
try: | |
while True: | |
line = process.stdout.readline() | |
if not line: break | |
decoded_line = (line.decode('utf-8') | |
.replace('\\033[K', '\033[K') | |
.replace('\\033[1A', '\033[1A') | |
.replace('\\033[1B', '\033[1B') | |
.replace('\\r', '\r') | |
.encode(sys.stdout.encoding, errors='replace')) | |
sys.stdout.buffer.write(decoded_line) | |
sys.stdout.flush() | |
process.stdout.close() | |
process.wait() | |
except KeyboardInterrupt: | |
print("Killing process... will return when done.") | |
process.kill() | |
def _create_julia_files(dataset_filename, def_datasets, hyperparam_filename, def_hyperparams, | |
fractionReplaced, ncyclesperiteration, niterations, npop, | |
runfile_filename, topn, verbosity, julia_project, procs, weights, | |
X, variable_names, pkg_directory, need_install, update, **kwargs): | |
with open(hyperparam_filename, 'w') as f: | |
print(def_hyperparams, file=f) | |
with open(dataset_filename, 'w') as f: | |
print(def_datasets, file=f) | |
with open(runfile_filename, 'w') as f: | |
if julia_project is None: | |
julia_project = pkg_directory | |
else: | |
julia_project = Path(julia_project) | |
print(f'import Pkg', file=f) | |
print(f'Pkg.activate("{_escape_filename(julia_project)}")', file=f) | |
if need_install: | |
print(f'Pkg.instantiate()', file=f) | |
print(f'Pkg.update()', file=f) | |
print(f'Pkg.precompile()', file=f) | |
elif update: | |
print(f'Pkg.update()', file=f) | |
print(f'using SymbolicRegression', file=f) | |
print(f'include("{_escape_filename(hyperparam_filename)}")', file=f) | |
print(f'include("{_escape_filename(dataset_filename)}")', file=f) | |
if len(variable_names) == 0: | |
varMap = "[" + ",".join([f'"x{i}"' for i in range(X.shape[1])]) + "]" | |
else: | |
varMap = "[" + ",".join(['"' + vname + '"' for vname in variable_names]) + "]" | |
if weights is not None: | |
print(f'EquationSearch(X, y, weights=weights, niterations={niterations:d}, varMap={varMap}, options=options, numprocs={procs})', file=f) | |
else: | |
print(f'EquationSearch(X, y, niterations={niterations:d}, varMap={varMap}, options=options, numprocs={procs})', file=f) | |
def _make_datasets_julia_str(X, X_filename, weights, weights_filename, y, y_filename, | |
multioutput, **kwargs): | |
def_datasets = """using DelimitedFiles""" | |
np.savetxt(X_filename, X.astype(np.float32), delimiter=',') | |
if multioutput: | |
np.savetxt(y_filename, y.astype(np.float32), delimiter=',') | |
else: | |
np.savetxt(y_filename, y.reshape(-1, 1).astype(np.float32), delimiter=',') | |
if weights is not None: | |
if multioutput: | |
np.savetxt(weights_filename, weights.astype(np.float32), delimiter=',') | |
else: | |
np.savetxt(weights_filename, weights.reshape(-1, 1).astype(np.float32), delimiter=',') | |
def_datasets += f""" | |
X = copy(transpose(readdlm("{_escape_filename(X_filename)}", ',', Float32, '\\n')))""" | |
if multioutput: | |
def_datasets+= f""" | |
y = copy(transpose(readdlm("{_escape_filename(y_filename)}", ',', Float32, '\\n')))""" | |
else: | |
def_datasets+= f""" | |
y = readdlm("{_escape_filename(y_filename)}", ',', Float32, '\\n')[:, 1]""" | |
if weights is not None: | |
if multioutput: | |
def_datasets += f""" | |
weights = copy(transpose(readdlm("{_escape_filename(weights_filename)}", ',', Float32, '\\n')))""" | |
else: | |
def_datasets += f""" | |
weights = readdlm("{_escape_filename(weights_filename)}", ',', Float32, '\\n')[:, 1]""" | |
return def_datasets | |
def _make_hyperparams_julia_str(X, alpha, annealing, batchSize, batching, binary_operators, constraints_str, | |
def_hyperparams, equation_file, fast_cycle, fractionReplacedHof, hofMigration, | |
maxdepth, maxsize, migration, | |
optimizer_algorithm, optimizer_nrestarts, | |
optimize_probability, optimizer_iterations, npop, | |
parsimony, perturbationFactor, populations, procs, shouldOptimizeConstants, | |
unary_operators, useFrequency, use_custom_variable_names, | |
variable_names, warmupMaxsizeBy, weightAddNode, | |
ncyclesperiteration, fractionReplaced, topn, verbosity, progress, loss, | |
weightDeleteNode, weightDoNothing, weightInsertNode, weightMutateConstant, | |
weightMutateOperator, weightRandomize, weightSimplify, weights, **kwargs): | |
try: | |
term_width = shutil.get_terminal_size().columns | |
except: | |
_, term_width = subprocess.check_output(['stty', 'size']).split() | |
def tuple_fix(ops): | |
if len(ops) > 1: | |
return ', '.join(ops) | |
elif len(ops) == 0: | |
return '' | |
else: | |
return ops[0] + ',' | |
def_hyperparams += f"""\n | |
plus=(+) | |
sub=(-) | |
mult=(*) | |
square=SymbolicRegression.square | |
cube=SymbolicRegression.cube | |
pow=(^) | |
div=(/) | |
log_abs=SymbolicRegression.log_abs | |
log2_abs=SymbolicRegression.log2_abs | |
log10_abs=SymbolicRegression.log10_abs | |
log1p_abs=SymbolicRegression.log1p_abs | |
acosh_abs=SymbolicRegression.acosh_abs | |
atanh_clip=SymbolicRegression.atanh_clip | |
sqrt_abs=SymbolicRegression.sqrt_abs | |
neg=SymbolicRegression.neg | |
greater=SymbolicRegression.greater | |
relu=SymbolicRegression.relu | |
logical_or=SymbolicRegression.logical_or | |
logical_and=SymbolicRegression.logical_and | |
_custom_loss = {loss} | |
options = SymbolicRegression.Options(binary_operators={'(' + tuple_fix(binary_operators) + ')'}, | |
unary_operators={'(' + tuple_fix(unary_operators) + ')'}, | |
{constraints_str} | |
parsimony={parsimony:f}f0, | |
loss=_custom_loss, | |
alpha={alpha:f}f0, | |
maxsize={maxsize:d}, | |
maxdepth={maxdepth:d}, | |
fast_cycle={'true' if fast_cycle else 'false'}, | |
migration={'true' if migration else 'false'}, | |
hofMigration={'true' if hofMigration else 'false'}, | |
fractionReplacedHof={fractionReplacedHof}f0, | |
shouldOptimizeConstants={'true' if shouldOptimizeConstants else 'false'}, | |
hofFile="{_escape_filename(equation_file)}", | |
npopulations={populations:d}, | |
optimizer_algorithm="{optimizer_algorithm}", | |
optimizer_nrestarts={optimizer_nrestarts:d}, | |
optimize_probability={optimize_probability:f}f0, | |
optimizer_iterations={optimizer_iterations:d}, | |
perturbationFactor={perturbationFactor:f}f0, | |
annealing={"true" if annealing else "false"}, | |
batching={"true" if batching else "false"}, | |
batchSize={min([batchSize, len(X)]) if batching else len(X):d}, | |
mutationWeights=[ | |
{weightMutateConstant:f}, | |
{weightMutateOperator:f}, | |
{weightAddNode:f}, | |
{weightInsertNode:f}, | |
{weightDeleteNode:f}, | |
{weightSimplify:f}, | |
{weightRandomize:f}, | |
{weightDoNothing:f} | |
], | |
warmupMaxsizeBy={warmupMaxsizeBy:f}f0, | |
useFrequency={"true" if useFrequency else "false"}, | |
npop={npop:d}, | |
ncyclesperiteration={ncyclesperiteration:d}, | |
fractionReplaced={fractionReplaced:f}f0, | |
topn={topn:d}, | |
verbosity=round(Int32, {verbosity:f}), | |
progress={'true' if progress else 'false'}, | |
terminal_width={term_width:d} | |
""" | |
def_hyperparams += '\n)' | |
return def_hyperparams | |
def _make_constraints_str(binary_operators, constraints, unary_operators, **kwargs): | |
constraints_str = "una_constraints = [" | |
first = True | |
for op in unary_operators: | |
val = constraints[op] | |
if not first: | |
constraints_str += ", " | |
constraints_str += f"{val:d}" | |
first = False | |
constraints_str += """], | |
bin_constraints = [""" | |
first = True | |
for op in binary_operators: | |
tup = constraints[op] | |
if not first: | |
constraints_str += ", " | |
constraints_str += f"({tup[0]:d}, {tup[1]:d})" | |
first = False | |
constraints_str += "]," | |
return constraints_str | |
def _handle_constraints(binary_operators, constraints, unary_operators, **kwargs): | |
for op in unary_operators: | |
if op not in constraints: | |
constraints[op] = -1 | |
for op in binary_operators: | |
if op not in constraints: | |
constraints[op] = (-1, -1) | |
if op in ['plus', 'sub']: | |
if constraints[op][0] != constraints[op][1]: | |
raise NotImplementedError( | |
"You need equal constraints on both sides for - and *, due to simplification strategies.") | |
elif op == 'mult': | |
# Make sure the complex expression is in the left side. | |
if constraints[op][0] == -1: | |
continue | |
elif constraints[op][1] == -1 or constraints[op][0] < constraints[op][1]: | |
constraints[op][0], constraints[op][1] = constraints[op][1], constraints[op][0] | |
def _create_inline_operators(binary_operators, unary_operators, **kwargs): | |
def_hyperparams = "" | |
for op_list in [binary_operators, unary_operators]: | |
for i in range(len(op_list)): | |
op = op_list[i] | |
is_user_defined_operator = '(' in op | |
if is_user_defined_operator: | |
def_hyperparams += op + "\n" | |
# Cut off from the first non-alphanumeric char: | |
first_non_char = [ | |
j for j in range(len(op)) | |
if not (op[j].isalpha() or op[j].isdigit())][0] | |
function_name = op[:first_non_char] | |
op_list[i] = function_name | |
return def_hyperparams | |
def _handle_feature_selection(X, select_k_features, use_custom_variable_names, variable_names, y): | |
if select_k_features is not None: | |
selection = run_feature_selection(X, y, select_k_features) | |
print(f"Using features {selection}") | |
X = X[:, selection] | |
if use_custom_variable_names: | |
variable_names = [variable_names[selection[i]] for i in range(len(selection))] | |
else: | |
selection = None | |
return X, variable_names, selection | |
def _set_paths(tempdir): | |
# System-independent paths | |
pkg_directory = Path(__file__).parents[1] | |
default_project_file = pkg_directory / "Project.toml" | |
tmpdir = Path(tempfile.mkdtemp(dir=tempdir)) | |
hyperparam_filename = tmpdir / f'hyperparams.jl' | |
dataset_filename = tmpdir / f'dataset.jl' | |
runfile_filename = tmpdir / f'runfile.jl' | |
X_filename = tmpdir / "X.csv" | |
y_filename = tmpdir / "y.csv" | |
weights_filename = tmpdir / "weights.csv" | |
return dict(pkg_directory=pkg_directory, | |
default_project_file=default_project_file, | |
X_filename=X_filename, | |
dataset_filename=dataset_filename, | |
hyperparam_filename=hyperparam_filename, | |
runfile_filename=runfile_filename, tmpdir=tmpdir, | |
weights_filename=weights_filename, y_filename=y_filename) | |
def _check_assertions(X, binary_operators, unary_operators, use_custom_variable_names, variable_names, weights, y): | |
# Check for potential errors before they happen | |
assert len(unary_operators) + len(binary_operators) > 0 | |
assert len(X.shape) == 2 | |
assert len(y.shape) in [1, 2] | |
assert X.shape[0] == y.shape[0] | |
if weights is not None: | |
assert weights.shape == y.shape | |
assert X.shape[0] == weights.shape[0] | |
if use_custom_variable_names: | |
assert len(variable_names) == X.shape[1] | |
def _check_for_julia_installation(): | |
try: | |
process = subprocess.Popen(["julia", "-v"], stdout=subprocess.PIPE, bufsize=-1) | |
while True: | |
line = process.stdout.readline() | |
if not line: break | |
process.stdout.close() | |
process.wait() | |
except FileNotFoundError: | |
import os | |
raise RuntimeError(f"Your current $PATH is: {os.environ['PATH']}\nPySR could not start julia. Make sure julia is installed and on your $PATH.") | |
process.kill() | |
def run_feature_selection(X, y, select_k_features): | |
"""Use a gradient boosting tree regressor as a proxy for finding | |
the k most important features in X, returning indices for those | |
features as output.""" | |
from sklearn.ensemble import RandomForestRegressor | |
from sklearn.feature_selection import SelectFromModel, SelectKBest | |
clf = RandomForestRegressor(n_estimators=100, max_depth=3, random_state=0) | |
clf.fit(X, y) | |
selector = SelectFromModel(clf, threshold=-np.inf, | |
max_features=select_k_features, prefit=True) | |
return selector.get_support(indices=True) | |
def get_hof(equation_file=None, n_features=None, variable_names=None, | |
output_jax_format=None, output_torch_format=None, | |
selection=None, extra_sympy_mappings=None, | |
extra_jax_mappings=None, extra_torch_mappings=None, | |
multioutput=None, nout=None, **kwargs): | |
"""Get the equations from a hall of fame file. If no arguments | |
entered, the ones used previously from a call to PySR will be used.""" | |
global global_state | |
if equation_file is None: equation_file = global_state['equation_file'] | |
if n_features is None: n_features = global_state['n_features'] | |
if variable_names is None: variable_names = global_state['variable_names'] | |
if extra_sympy_mappings is None: extra_sympy_mappings = global_state['extra_sympy_mappings'] | |
if extra_jax_mappings is None: extra_jax_mappings = global_state['extra_jax_mappings'] | |
if extra_torch_mappings is None: extra_torch_mappings = global_state['extra_torch_mappings'] | |
if output_torch_format is None: output_torch_format = global_state['output_torch_format'] | |
if output_jax_format is None: output_jax_format = global_state['output_jax_format'] | |
if multioutput is None: multioutput = global_state['multioutput'] | |
if nout is None: nout = global_state['nout'] | |
global_state['selection'] = selection | |
global_state['equation_file'] = equation_file | |
global_state['n_features'] = n_features | |
global_state['variable_names'] = variable_names | |
global_state['extra_sympy_mappings'] = extra_sympy_mappings | |
global_state['extra_jax_mappings'] = extra_jax_mappings | |
global_state['extra_torch_mappings'] = extra_torch_mappings | |
global_state['output_torch_format'] = output_torch_format | |
global_state['output_jax_format'] = output_jax_format | |
global_state['multioutput'] = multioutput | |
global_state['nout'] = nout | |
global_state['selection'] = selection | |
try: | |
if multioutput: | |
all_outputs = [pd.read_csv(f'out{i}_' + str(equation_file) + '.bkup', sep="|") for i in range(1, nout+1)] | |
else: | |
all_outputs = [pd.read_csv(str(equation_file) + '.bkup', sep="|")] | |
except FileNotFoundError: | |
raise RuntimeError("Couldn't find equation file! The equation search likely exited before a single iteration completed.") | |
ret_outputs = [] | |
for output in all_outputs: | |
scores = [] | |
lastMSE = None | |
lastComplexity = 0 | |
sympy_format = [] | |
lambda_format = [] | |
if output_jax_format: | |
jax_format = [] | |
if output_torch_format: | |
torch_format = [] | |
use_custom_variable_names = (len(variable_names) != 0) | |
local_sympy_mappings = { | |
**extra_sympy_mappings, | |
**sympy_mappings | |
} | |
if use_custom_variable_names: | |
sympy_symbols = [sympy.Symbol(variable_names[i]) for i in range(n_features)] | |
else: | |
sympy_symbols = [sympy.Symbol('x%d'%i) for i in range(n_features)] | |
for i in range(len(output)): | |
eqn = sympify(output.loc[i, 'Equation'], locals=local_sympy_mappings) | |
sympy_format.append(eqn) | |
# Numpy: | |
lambda_format.append(CallableEquation(sympy_symbols, eqn, selection)) | |
# JAX: | |
if output_jax_format: | |
from .export_jax import sympy2jax | |
func, params = sympy2jax(eqn, sympy_symbols, selection) | |
jax_format.append({'callable': func, 'parameters': params}) | |
# Torch: | |
if output_torch_format: | |
from .export_torch import sympy2torch | |
module = sympy2torch(eqn, sympy_symbols, selection) | |
torch_format.append(module) | |
curMSE = output.loc[i, 'MSE'] | |
curComplexity = output.loc[i, 'Complexity'] | |
if lastMSE is None: | |
cur_score = 0.0 | |
else: | |
cur_score = - np.log(curMSE/lastMSE)/(curComplexity - lastComplexity) | |
scores.append(cur_score) | |
lastMSE = curMSE | |
lastComplexity = curComplexity | |
output['score'] = np.array(scores) | |
output['sympy_format'] = sympy_format | |
output['lambda_format'] = lambda_format | |
output_cols = ['Complexity', 'MSE', 'score', 'Equation', 'sympy_format', 'lambda_format'] | |
if output_jax_format: | |
output_cols += ['jax_format'] | |
output['jax_format'] = jax_format | |
if output_torch_format: | |
output_cols += ['torch_format'] | |
output['torch_format'] = torch_format | |
ret_outputs.append(output[output_cols]) | |
if multioutput: | |
return ret_outputs | |
else: | |
return ret_outputs[0] | |
def best_row(equations=None): | |
"""Return the best row of a hall of fame file using the score column. | |
By default this uses the last equation file. | |
""" | |
if equations is None: equations = get_hof() | |
if isinstance(equations, list): | |
return [eq.iloc[np.argmax(eq['score'])] for eq in equations] | |
else: | |
return equations.iloc[np.argmax(equations['score'])] | |
def best_tex(equations=None): | |
"""Return the equation with the best score, in latex format | |
By default this uses the last equation file. | |
""" | |
if equations is None: equations = get_hof() | |
if isinstance(equations, list): | |
return [sympy.latex(best_row(eq)['sympy_format'].simplify()) for eq in equations] | |
else: | |
return sympy.latex(best_row(equations)['sympy_format'].simplify()) | |
def best(equations=None): | |
"""Return the equation with the best score, in sympy format. | |
By default this uses the last equation file. | |
""" | |
if equations is None: equations = get_hof() | |
if isinstance(equations, list): | |
return [best_row(eq)['sympy_format'].simplify() for eq in equations] | |
else: | |
return best_row(equations)['sympy_format'].simplify() | |
def best_callable(equations=None): | |
"""Return the equation with the best score, in callable format. | |
By default this uses the last equation file. | |
""" | |
if equations is None: equations = get_hof() | |
if isinstance(equations, list): | |
return [best_row(eq)['lambda_format'] for eq in equations] | |
else: | |
return best_row(equations)['lambda_format'] | |
def _escape_filename(filename): | |
"""Turns a file into a string representation with correctly escaped backslashes""" | |
repr = str(filename) | |
repr = repr.replace('\\', '\\\\') | |
return repr | |
# https://gist.github.com/garrettdreyfus/8153571 | |
def _yesno(question): | |
"""Simple Yes/No Function.""" | |
prompt = f'{question} (y/n): ' | |
ans = input(prompt).strip().lower() | |
if ans not in ['y', 'n']: | |
print(f'{ans} is invalid, please try again...') | |
return _yesno(question) | |
if ans == 'y': | |
return True | |
return False | |