Spaces:
Running
Running
import os | |
import traceback | |
import inspect | |
import unittest | |
import numpy as np | |
from sklearn import model_selection | |
from pysr import PySRRegressor | |
from pysr.sr import run_feature_selection, _handle_feature_selection | |
from pysr.export_latex import to_latex | |
from sklearn.utils.estimator_checks import check_estimator | |
import sympy | |
import pandas as pd | |
import warnings | |
import pickle as pkl | |
import tempfile | |
DEFAULT_PARAMS = inspect.signature(PySRRegressor.__init__).parameters | |
DEFAULT_NITERATIONS = DEFAULT_PARAMS["niterations"].default | |
DEFAULT_POPULATIONS = DEFAULT_PARAMS["populations"].default | |
DEFAULT_NCYCLES = DEFAULT_PARAMS["ncyclesperiteration"].default | |
class TestPipeline(unittest.TestCase): | |
def setUp(self): | |
# Using inspect, | |
# get default niterations from PySRRegressor, and double them: | |
self.default_test_kwargs = dict( | |
progress=False, | |
model_selection="accuracy", | |
niterations=DEFAULT_NITERATIONS * 2, | |
populations=DEFAULT_POPULATIONS * 2, | |
temp_equation_file=True, | |
) | |
self.rstate = np.random.RandomState(0) | |
self.X = self.rstate.randn(100, 5) | |
def test_linear_relation(self): | |
y = self.X[:, 0] | |
model = PySRRegressor( | |
**self.default_test_kwargs, | |
early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 1", | |
) | |
model.fit(self.X, y) | |
print(model.equations_) | |
self.assertLessEqual(model.get_best()["loss"], 1e-4) | |
def test_linear_relation_named(self): | |
y = self.X[:, 0] | |
model = PySRRegressor( | |
**self.default_test_kwargs, | |
early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 1", | |
) | |
model.fit(self.X, y, variable_names=["c1", "c2", "c3", "c4", "c5"]) | |
self.assertIn("c1", model.equations_.iloc[-1]["equation"]) | |
def test_linear_relation_weighted(self): | |
y = self.X[:, 0] | |
weights = np.ones_like(y) | |
model = PySRRegressor( | |
**self.default_test_kwargs, | |
early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 1", | |
) | |
model.fit(self.X, y, weights=weights) | |
print(model.equations_) | |
self.assertLessEqual(model.get_best()["loss"], 1e-4) | |
def test_multiprocessing(self): | |
y = self.X[:, 0] | |
model = PySRRegressor( | |
**self.default_test_kwargs, | |
procs=2, | |
multithreading=False, | |
early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 1", | |
) | |
model.fit(self.X, y) | |
print(model.equations_) | |
self.assertLessEqual(model.equations_.iloc[-1]["loss"], 1e-4) | |
def test_multioutput_custom_operator_quiet_custom_complexity(self): | |
y = self.X[:, [0, 1]] ** 2 | |
model = PySRRegressor( | |
unary_operators=["square_op(x) = x^2"], | |
extra_sympy_mappings={"square_op": lambda x: x**2}, | |
complexity_of_operators={"square_op": 2, "plus": 1}, | |
binary_operators=["plus"], | |
verbosity=0, | |
**self.default_test_kwargs, | |
procs=0, | |
# Test custom operators with constraints: | |
nested_constraints={"square_op": {"square_op": 3}}, | |
constraints={"square_op": 10}, | |
early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 3", | |
) | |
model.fit(self.X, y) | |
equations = model.equations_ | |
print(equations) | |
self.assertIn("square_op", model.equations_[0].iloc[-1]["equation"]) | |
self.assertLessEqual(equations[0].iloc[-1]["loss"], 1e-4) | |
self.assertLessEqual(equations[1].iloc[-1]["loss"], 1e-4) | |
test_y1 = model.predict(self.X) | |
test_y2 = model.predict(self.X, index=[-1, -1]) | |
mse1 = np.average((test_y1 - y) ** 2) | |
mse2 = np.average((test_y2 - y) ** 2) | |
self.assertLessEqual(mse1, 1e-4) | |
self.assertLessEqual(mse2, 1e-4) | |
bad_y = model.predict(self.X, index=[0, 0]) | |
bad_mse = np.average((bad_y - y) ** 2) | |
self.assertGreater(bad_mse, 1e-4) | |
def test_multioutput_weighted_with_callable_temp_equation(self): | |
X = self.X.copy() | |
y = X[:, [0, 1]] ** 2 | |
w = self.rstate.rand(*y.shape) | |
w[w < 0.5] = 0.0 | |
w[w >= 0.5] = 1.0 | |
# Double equation when weights are 0: | |
y = (2 - w) * y | |
# Thus, pysr needs to use the weights to find the right equation! | |
model = PySRRegressor( | |
unary_operators=["sq(x) = x^2"], | |
binary_operators=["plus"], | |
extra_sympy_mappings={"sq": lambda x: x**2}, | |
**self.default_test_kwargs, | |
procs=0, | |
delete_tempfiles=False, | |
early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 2", | |
) | |
model.fit(X.copy(), y, weights=w) | |
# These tests are flaky, so don't fail test: | |
try: | |
np.testing.assert_almost_equal( | |
model.predict(X.copy())[:, 0], X[:, 0] ** 2, decimal=4 | |
) | |
except AssertionError: | |
print("Error in test_multioutput_weighted_with_callable_temp_equation") | |
print("Model equations: ", model.sympy()[0]) | |
print("True equation: x0^2") | |
try: | |
np.testing.assert_almost_equal( | |
model.predict(X.copy())[:, 1], X[:, 1] ** 2, decimal=4 | |
) | |
except AssertionError: | |
print("Error in test_multioutput_weighted_with_callable_temp_equation") | |
print("Model equations: ", model.sympy()[1]) | |
print("True equation: x1^2") | |
def test_empty_operators_single_input_warm_start(self): | |
X = self.rstate.randn(100, 1) | |
y = X[:, 0] + 3.0 | |
regressor = PySRRegressor( | |
unary_operators=[], | |
binary_operators=["plus"], | |
**self.default_test_kwargs, | |
early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 3", | |
) | |
self.assertTrue("None" in regressor.__repr__()) | |
regressor.fit(X, y) | |
self.assertTrue("None" not in regressor.__repr__()) | |
self.assertTrue(">>>>" in regressor.__repr__()) | |
self.assertLessEqual(regressor.equations_.iloc[-1]["loss"], 1e-4) | |
np.testing.assert_almost_equal(regressor.predict(X), y, decimal=1) | |
# Test if repeated fit works: | |
regressor.set_params( | |
niterations=1, | |
ncyclesperiteration=2, | |
warm_start=True, | |
early_stop_condition=None, | |
) | |
# This should exit almost immediately, and use the old equations | |
regressor.fit(X, y) | |
self.assertLessEqual(regressor.equations_.iloc[-1]["loss"], 1e-4) | |
np.testing.assert_almost_equal(regressor.predict(X), y, decimal=1) | |
# Tweak model selection: | |
regressor.set_params(model_selection="best") | |
self.assertEqual(regressor.get_params()["model_selection"], "best") | |
self.assertTrue("None" not in regressor.__repr__()) | |
self.assertTrue(">>>>" in regressor.__repr__()) | |
def test_warm_start_set_at_init(self): | |
# Smoke test for bug where warm_start=True is set at init | |
y = self.X[:, 0] | |
regressor = PySRRegressor(warm_start=True, max_evals=10) | |
regressor.fit(self.X, y) | |
def test_noisy(self): | |
y = self.X[:, [0, 1]] ** 2 + self.rstate.randn(self.X.shape[0], 1) * 0.05 | |
model = PySRRegressor( | |
# Test that passing a single operator works: | |
unary_operators="sq(x) = x^2", | |
binary_operators="plus", | |
extra_sympy_mappings={"sq": lambda x: x**2}, | |
**self.default_test_kwargs, | |
procs=0, | |
denoise=True, | |
early_stop_condition="stop_if(loss, complexity) = loss < 0.05 && complexity == 2", | |
) | |
# We expect in this case that the "best" | |
# equation should be the right one: | |
model.set_params(model_selection="best") | |
# Also try without a temp equation file: | |
model.set_params(temp_equation_file=False) | |
model.fit(self.X, y) | |
self.assertLessEqual(model.get_best()[1]["loss"], 1e-2) | |
self.assertLessEqual(model.get_best()[1]["loss"], 1e-2) | |
def test_pandas_resample_with_nested_constraints(self): | |
X = pd.DataFrame( | |
{ | |
"T": self.rstate.randn(500), | |
"x": self.rstate.randn(500), | |
"unused_feature": self.rstate.randn(500), | |
} | |
) | |
true_fn = lambda x: np.array(x["T"] + x["x"] ** 2 + 1.323837) | |
y = true_fn(X) | |
noise = self.rstate.randn(500) * 0.01 | |
y = y + noise | |
# We also test y as a pandas array: | |
y = pd.Series(y) | |
# Resampled array is a different order of features: | |
Xresampled = pd.DataFrame( | |
{ | |
"unused_feature": self.rstate.randn(100), | |
"x": self.rstate.randn(100), | |
"T": self.rstate.randn(100), | |
} | |
) | |
model = PySRRegressor( | |
unary_operators=[], | |
binary_operators=["+", "*", "/", "-"], | |
**self.default_test_kwargs, | |
denoise=True, | |
nested_constraints={"/": {"+": 1, "-": 1}, "+": {"*": 4}}, | |
early_stop_condition="stop_if(loss, complexity) = loss < 1e-3 && complexity == 7", | |
) | |
model.fit(X, y, Xresampled=Xresampled) | |
self.assertNotIn("unused_feature", model.latex()) | |
self.assertIn("T", model.latex()) | |
self.assertIn("x", model.latex()) | |
self.assertLessEqual(model.get_best()["loss"], 1e-1) | |
fn = model.get_best()["lambda_format"] | |
X2 = pd.DataFrame( | |
{ | |
"T": self.rstate.randn(100), | |
"unused_feature": self.rstate.randn(100), | |
"x": self.rstate.randn(100), | |
} | |
) | |
self.assertLess(np.average((fn(X2) - true_fn(X2)) ** 2), 1e-1) | |
self.assertLess(np.average((model.predict(X2) - true_fn(X2)) ** 2), 1e-1) | |
def test_high_dim_selection_early_stop(self): | |
X = pd.DataFrame({f"k{i}": self.rstate.randn(10000) for i in range(10)}) | |
Xresampled = pd.DataFrame({f"k{i}": self.rstate.randn(100) for i in range(10)}) | |
y = X["k7"] ** 2 + np.cos(X["k9"]) * 3 | |
model = PySRRegressor( | |
unary_operators=["cos"], | |
select_k_features=3, | |
early_stop_condition=1e-4, # Stop once most accurate equation is <1e-4 MSE | |
maxsize=12, | |
**self.default_test_kwargs, | |
) | |
model.set_params(model_selection="accuracy") | |
model.fit(X, y, Xresampled=Xresampled) | |
self.assertLess(np.average((model.predict(X) - y) ** 2), 1e-4) | |
# Again, but with numpy arrays: | |
model.fit(X.values, y.values, Xresampled=Xresampled.values) | |
self.assertLess(np.average((model.predict(X.values) - y.values) ** 2), 1e-4) | |
def manually_create_model(equations, feature_names=None): | |
if feature_names is None: | |
feature_names = ["x0", "x1"] | |
model = PySRRegressor( | |
progress=False, | |
niterations=1, | |
extra_sympy_mappings={}, | |
output_jax_format=False, | |
model_selection="accuracy", | |
equation_file="equation_file.csv", | |
) | |
# Set up internal parameters as if it had been fitted: | |
model.equation_file_ = "equation_file.csv" | |
model.nout_ = 1 | |
model.selection_mask_ = None | |
model.feature_names_in_ = np.array(feature_names, dtype=object) | |
equations["complexity loss equation".split(" ")].to_csv( | |
"equation_file.csv.bkup", sep="|" | |
) | |
model.refresh() | |
return model | |
class TestBest(unittest.TestCase): | |
def setUp(self): | |
self.rstate = np.random.RandomState(0) | |
self.X = self.rstate.randn(10, 2) | |
self.y = np.cos(self.X[:, 0]) ** 2 | |
equations = pd.DataFrame( | |
{ | |
"equation": ["1.0", "cos(x0)", "square(cos(x0))"], | |
"loss": [1.0, 0.1, 1e-5], | |
"complexity": [1, 2, 3], | |
} | |
) | |
self.model = manually_create_model(equations) | |
self.equations_ = self.model.equations_ | |
def test_best(self): | |
self.assertEqual(self.model.sympy(), sympy.cos(sympy.Symbol("x0")) ** 2) | |
def test_index_selection(self): | |
self.assertEqual(self.model.sympy(-1), sympy.cos(sympy.Symbol("x0")) ** 2) | |
self.assertEqual(self.model.sympy(2), sympy.cos(sympy.Symbol("x0")) ** 2) | |
self.assertEqual(self.model.sympy(1), sympy.cos(sympy.Symbol("x0"))) | |
self.assertEqual(self.model.sympy(0), 1.0) | |
def test_best_tex(self): | |
self.assertEqual(self.model.latex(), "\\cos^{2}{\\left(x_{0} \\right)}") | |
def test_best_lambda(self): | |
X = self.X | |
y = self.y | |
for f in [self.model.predict, self.equations_.iloc[-1]["lambda_format"]]: | |
np.testing.assert_almost_equal(f(X), y, decimal=4) | |
class TestFeatureSelection(unittest.TestCase): | |
def setUp(self): | |
self.rstate = np.random.RandomState(0) | |
def test_feature_selection(self): | |
X = self.rstate.randn(20000, 5) | |
y = X[:, 2] ** 2 + X[:, 3] ** 2 | |
selected = run_feature_selection(X, y, select_k_features=2) | |
self.assertEqual(sorted(selected), [2, 3]) | |
def test_feature_selection_handler(self): | |
X = self.rstate.randn(20000, 5) | |
y = X[:, 2] ** 2 + X[:, 3] ** 2 | |
var_names = [f"x{i}" for i in range(5)] | |
selected_X, selection = _handle_feature_selection( | |
X, | |
select_k_features=2, | |
variable_names=var_names, | |
y=y, | |
) | |
self.assertTrue((2 in selection) and (3 in selection)) | |
selected_var_names = [var_names[i] for i in selection] | |
self.assertEqual(set(selected_var_names), set("x2 x3".split(" "))) | |
np.testing.assert_array_equal( | |
np.sort(selected_X, axis=1), np.sort(X[:, [2, 3]], axis=1) | |
) | |
class TestMiscellaneous(unittest.TestCase): | |
"""Test miscellaneous functions.""" | |
def test_deprecation(self): | |
"""Ensure that deprecation works as expected. | |
This should give a warning, and sets the correct value. | |
""" | |
with self.assertWarns(FutureWarning): | |
model = PySRRegressor(fractionReplaced=0.2) | |
# This is a deprecated parameter, so we should get a warning. | |
# The correct value should be set: | |
self.assertEqual(model.fraction_replaced, 0.2) | |
def test_size_warning(self): | |
"""Ensure that a warning is given for a large input size.""" | |
model = PySRRegressor() | |
X = np.random.randn(10001, 2) | |
y = np.random.randn(10001) | |
with warnings.catch_warnings(): | |
warnings.simplefilter("error") | |
with self.assertRaises(Exception) as context: | |
model.fit(X, y) | |
self.assertIn("more than 10,000", str(context.exception)) | |
def test_feature_warning(self): | |
"""Ensure that a warning is given for large number of features.""" | |
model = PySRRegressor() | |
X = np.random.randn(100, 10) | |
y = np.random.randn(100) | |
with warnings.catch_warnings(): | |
warnings.simplefilter("error") | |
with self.assertRaises(Exception) as context: | |
model.fit(X, y) | |
self.assertIn("with 10 features or more", str(context.exception)) | |
def test_deterministic_warnings(self): | |
"""Ensure that warnings are given for determinism""" | |
model = PySRRegressor(random_state=0) | |
X = np.random.randn(100, 2) | |
y = np.random.randn(100) | |
with warnings.catch_warnings(): | |
warnings.simplefilter("error") | |
with self.assertRaises(Exception) as context: | |
model.fit(X, y) | |
self.assertIn("`deterministic`", str(context.exception)) | |
def test_deterministic_errors(self): | |
"""Setting deterministic without random_state should error""" | |
model = PySRRegressor(deterministic=True) | |
X = np.random.randn(100, 2) | |
y = np.random.randn(100) | |
with self.assertRaises(ValueError): | |
model.fit(X, y) | |
def test_pickle_with_temp_equation_file(self): | |
"""If we have a temporary equation file, unpickle the estimator.""" | |
model = PySRRegressor( | |
populations=int(1 + DEFAULT_POPULATIONS / 5), | |
temp_equation_file=True, | |
procs=0, | |
multithreading=False, | |
) | |
nout = 3 | |
X = np.random.randn(100, 2) | |
y = np.random.randn(100, nout) | |
model.fit(X, y) | |
contents = model.equation_file_contents_.copy() | |
y_predictions = model.predict(X) | |
equation_file_base = model.equation_file_ | |
for i in range(1, nout + 1): | |
assert not os.path.exists(str(equation_file_base) + f".out{i}.bkup") | |
with tempfile.NamedTemporaryFile() as pickle_file: | |
pkl.dump(model, pickle_file) | |
pickle_file.seek(0) | |
model2 = pkl.load(pickle_file) | |
contents2 = model2.equation_file_contents_ | |
cols_to_check = ["equation", "loss", "complexity"] | |
for frame1, frame2 in zip(contents, contents2): | |
pd.testing.assert_frame_equal(frame1[cols_to_check], frame2[cols_to_check]) | |
y_predictions2 = model2.predict(X) | |
np.testing.assert_array_equal(y_predictions, y_predictions2) | |
def test_scikit_learn_compatibility(self): | |
"""Test PySRRegressor compatibility with scikit-learn.""" | |
model = PySRRegressor( | |
niterations=int(1 + DEFAULT_NITERATIONS / 10), | |
populations=int(1 + DEFAULT_POPULATIONS / 3), | |
ncyclesperiteration=int(2 + DEFAULT_NCYCLES / 10), | |
verbosity=0, | |
progress=False, | |
random_state=0, | |
deterministic=True, # Deterministic as tests require this. | |
procs=0, | |
multithreading=False, | |
warm_start=False, | |
temp_equation_file=True, | |
) # Return early. | |
check_generator = check_estimator(model, generate_only=True) | |
exception_messages = [] | |
for (_, check) in check_generator: | |
try: | |
with warnings.catch_warnings(): | |
warnings.simplefilter("ignore") | |
check(model) | |
print("Passed", check.func.__name__) | |
except Exception: | |
error_message = str(traceback.format_exc()) | |
exception_messages.append( | |
f"{check.func.__name__}:\n" + error_message + "\n" | |
) | |
print("Failed", check.func.__name__, "with:") | |
# Add a leading tab to error message, which | |
# might be multi-line: | |
print("\n".join([(" " * 4) + row for row in error_message.split("\n")])) | |
# If any checks failed don't let the test pass. | |
self.assertEqual(len(exception_messages), 0) | |
class TestLaTeXTable(unittest.TestCase): | |
def create_true_latex(self, middle_part, include_score=False): | |
if include_score: | |
true_latex_table_str = r""" | |
\begin{table}[h] | |
\begin{center} | |
\begin{tabular}{@{}lccc@{}} | |
\toprule | |
Equation & Complexity & Loss & Score \\ | |
\midrule""" | |
else: | |
true_latex_table_str = r""" | |
\begin{table}[h] | |
\begin{center} | |
\begin{tabular}{@{}lcc@{}} | |
\toprule | |
Equation & Complexity & Loss \\ | |
\midrule""" | |
true_latex_table_str += middle_part | |
true_latex_table_str += r"""\bottomrule | |
\end{tabular} | |
\end{center} | |
\end{table} | |
""" | |
# First, remove empty lines: | |
true_latex_table_str = "\n".join( | |
[line.strip() for line in true_latex_table_str.split("\n") if len(line) > 0] | |
) | |
return true_latex_table_str.strip() | |
def test_simple_table(self): | |
equations = pd.DataFrame( | |
dict( | |
equation=["x0", "cos(x0)", "x0 + x1 - cos(x1 * x0)"], | |
loss=[1.052, 0.02315, 1.12347e-15], | |
complexity=[1, 2, 8], | |
) | |
) | |
model = manually_create_model(equations) | |
# Regular table: | |
latex_table_str = model._latex_table() | |
middle_part = r""" | |
$x_{0}$ & $1$ & $1.05$ \\ | |
$\cos{\left(x_{0} \right)}$ & $2$ & $0.0232$ \\ | |
$x_{0} + x_{1} - \cos{\left(x_{0} x_{1} \right)}$ & $8$ & $1.12 \cdot 10^{-15}$ \\ | |
""" | |
true_latex_table_str = self.create_true_latex(middle_part) | |
self.assertEqual(latex_table_str, true_latex_table_str) | |
# Different precision: | |
latex_table_str = model._latex_table(precision=5) | |
middle_part = r""" | |
$x_{0}$ & $1$ & $1.0520$ \\ | |
$\cos{\left(x_{0} \right)}$ & $2$ & $0.023150$ \\ | |
$x_{0} + x_{1} - \cos{\left(x_{0} x_{1} \right)}$ & $8$ & $1.1235 \cdot 10^{-15}$ \\ | |
""" | |
true_latex_table_str = self.create_true_latex(middle_part) | |
self.assertEqual(latex_table_str, self.create_true_latex(middle_part)) | |
# Including score: | |
latex_table_str = model._latex_table(include_score=True) | |
middle_part = r""" | |
$x_{0}$ & $1$ & $1.05$ & $0.0$ \\ | |
$\cos{\left(x_{0} \right)}$ & $2$ & $0.0232$ & $3.82$ \\ | |
$x_{0} + x_{1} - \cos{\left(x_{0} x_{1} \right)}$ & $8$ & $1.12 \cdot 10^{-15}$ & $5.11$ \\ | |
""" | |
true_latex_table_str = self.create_true_latex(middle_part, include_score=True) | |
self.assertEqual(latex_table_str, true_latex_table_str) | |
# Only last equation: | |
latex_table_str = model._latex_table(indices=[2]) | |
middle_part = r""" | |
$x_{0} + x_{1} - \cos{\left(x_{0} x_{1} \right)}$ & $8$ & $1.12 \cdot 10^{-15}$ \\ | |
""" | |
true_latex_table_str = self.create_true_latex(middle_part) | |
self.assertEqual(latex_table_str, true_latex_table_str) | |
def test_latex_float_precision(self): | |
"""Test that we can print latex expressions with custom precision""" | |
expr = sympy.Float(4583.4485748, dps=50) | |
self.assertEqual(to_latex(expr, prec=6), r"4583.45") | |
self.assertEqual(to_latex(expr, prec=5), r"4583.4") | |
self.assertEqual(to_latex(expr, prec=4), r"4583.") | |
self.assertEqual(to_latex(expr, prec=3), r"4.58 \cdot 10^{3}") | |
self.assertEqual(to_latex(expr, prec=2), r"4.6 \cdot 10^{3}") | |
# Multiple numbers: | |
x = sympy.Symbol("x") | |
expr = x * 3232.324857384 - 1.4857485e-10 | |
self.assertEqual( | |
to_latex(expr, prec=2), "3.2 \cdot 10^{3} x - 1.5 \cdot 10^{-10}" | |
) | |
self.assertEqual( | |
to_latex(expr, prec=3), "3.23 \cdot 10^{3} x - 1.49 \cdot 10^{-10}" | |
) | |
self.assertEqual( | |
to_latex(expr, prec=8), "3232.3249 x - 1.4857485 \cdot 10^{-10}" | |
) | |