PySR / pysr /test /test_torch.py
MilesCranmer's picture
Try to fix nb sanitizer
ef66f4a unverified
raw
history blame
6.2 kB
import unittest
import numpy as np
import pandas as pd
import sympy
from .. import PySRRegressor, sympy2torch
class TestTorch(unittest.TestCase):
def setUp(self):
np.random.seed(0)
# Need to import after juliacall:
import torch
self.torch = torch
def test_sympy2torch(self):
x, y, z = sympy.symbols("x y z")
cosx = 1.0 * sympy.cos(x) + y
X = self.torch.tensor(np.random.randn(1000, 3))
true = 1.0 * self.torch.cos(X[:, 0]) + X[:, 1]
torch_module = sympy2torch(cosx, [x, y, z])
self.assertTrue(
np.all(np.isclose(torch_module(X).detach().numpy(), true.detach().numpy()))
)
def test_pipeline_pandas(self):
X = pd.DataFrame(np.random.randn(100, 10))
y = np.ones(X.shape[0])
model = PySRRegressor(
progress=False,
max_evals=10000,
model_selection="accuracy",
extra_sympy_mappings={},
output_torch_format=True,
)
model.fit(X, y)
equations = pd.DataFrame(
{
"Equation": ["1.0", "cos(x1)", "square(cos(x1))"],
"Loss": [1.0, 0.1, 1e-5],
"Complexity": [1, 2, 3],
}
)
equations["Complexity Loss Equation".split(" ")].to_csv(
"equation_file.csv.bkup"
)
model.refresh(checkpoint_file="equation_file.csv")
tformat = model.pytorch()
self.assertEqual(str(tformat), "_SingleSymPyModule(expression=cos(x1)**2)")
np.testing.assert_almost_equal(
tformat(self.torch.tensor(X.values)).detach().numpy(),
np.square(np.cos(X.values[:, 1])), # Selection 1st feature
decimal=3,
)
def test_pipeline(self):
X = np.random.randn(100, 10)
y = np.ones(X.shape[0])
model = PySRRegressor(
progress=False,
max_evals=10000,
model_selection="accuracy",
output_torch_format=True,
)
model.fit(X, y)
equations = pd.DataFrame(
{
"Equation": ["1.0", "cos(x1)", "square(cos(x1))"],
"Loss": [1.0, 0.1, 1e-5],
"Complexity": [1, 2, 3],
}
)
equations["Complexity Loss Equation".split(" ")].to_csv(
"equation_file.csv.bkup"
)
model.refresh(checkpoint_file="equation_file.csv")
tformat = model.pytorch()
self.assertEqual(str(tformat), "_SingleSymPyModule(expression=cos(x1)**2)")
np.testing.assert_almost_equal(
tformat(self.torch.tensor(X)).detach().numpy(),
np.square(np.cos(X[:, 1])), # 2nd feature
decimal=3,
)
def test_mod_mapping(self):
x, y, z = sympy.symbols("x y z")
expression = x**2 + sympy.atanh(sympy.Mod(y + 1, 2) - 1) * 3.2 * z
module = sympy2torch(expression, [x, y, z])
X = self.torch.rand(100, 3).float() * 10
true_out = (
X[:, 0] ** 2
+ self.torch.atanh(self.torch.fmod(X[:, 1] + 1, 2) - 1) * 3.2 * X[:, 2]
)
torch_out = module(X)
np.testing.assert_array_almost_equal(
true_out.detach(), torch_out.detach(), decimal=3
)
def test_custom_operator(self):
X = np.random.randn(100, 3)
y = np.ones(X.shape[0])
model = PySRRegressor(
progress=False,
max_evals=10000,
model_selection="accuracy",
output_torch_format=True,
)
model.fit(X, y)
equations = pd.DataFrame(
{
"Equation": ["1.0", "mycustomoperator(x1)"],
"Loss": [1.0, 0.1],
"Complexity": [1, 2],
}
)
equations["Complexity Loss Equation".split(" ")].to_csv(
"equation_file_custom_operator.csv.bkup"
)
model.set_params(
equation_file="equation_file_custom_operator.csv",
extra_sympy_mappings={"mycustomoperator": sympy.sin},
extra_torch_mappings={"mycustomoperator": self.torch.sin},
)
model.refresh(checkpoint_file="equation_file_custom_operator.csv")
self.assertEqual(str(model.sympy()), "sin(x1)")
# Will automatically use the set global state from get_hof.
tformat = model.pytorch()
self.assertEqual(str(tformat), "_SingleSymPyModule(expression=sin(x1))")
np.testing.assert_almost_equal(
tformat(self.torch.tensor(X)).detach().numpy(),
np.sin(X[:, 1]),
decimal=3,
)
def test_feature_selection_custom_operators(self):
rstate = np.random.RandomState(0)
X = pd.DataFrame({f"k{i}": rstate.randn(2000) for i in range(10, 21)})
cos_approx = lambda x: 1 - (x**2) / 2 + (x**4) / 24 + (x**6) / 720
y = X["k15"] ** 2 + 2 * cos_approx(X["k20"])
model = PySRRegressor(
progress=False,
unary_operators=["cos_approx(x) = 1 - x^2 / 2 + x^4 / 24 + x^6 / 720"],
select_k_features=3,
maxsize=10,
early_stop_condition=1e-5,
extra_sympy_mappings={"cos_approx": cos_approx},
extra_torch_mappings={"cos_approx": cos_approx},
random_state=0,
deterministic=True,
procs=0,
multithreading=False,
)
np.random.seed(0)
model.fit(X.values, y.values)
torch_module = model.pytorch()
np_output = model.predict(X.values)
torch_output = torch_module(self.torch.tensor(X.values)).detach().numpy()
np.testing.assert_almost_equal(y.values, np_output, decimal=3)
np.testing.assert_almost_equal(y.values, torch_output, decimal=3)
def runtests(just_tests=False):
"""Run all tests in test_torch.py."""
tests = [TestTorch]
if just_tests:
return tests
loader = unittest.TestLoader()
suite = unittest.TestSuite()
for test in tests:
suite.addTests(loader.loadTestsFromTestCase(test))
runner = unittest.TextTestRunner()
return runner.run(suite)