PySR / pysr /denoising.py
MilesCranmer's picture
Move denoising functionality to separate file
12e6d5e
raw
history blame
1.06 kB
"""Functions for denoising data during preprocessing."""
import numpy as np
def denoise(X, y, Xresampled=None, random_state=None):
"""Denoise the dataset using a Gaussian process."""
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import RBF, ConstantKernel, WhiteKernel
gp_kernel = RBF(np.ones(X.shape[1])) + WhiteKernel(1e-1) + ConstantKernel()
gpr = GaussianProcessRegressor(
kernel=gp_kernel, n_restarts_optimizer=50, random_state=random_state
)
gpr.fit(X, y)
if Xresampled is not None:
return Xresampled, gpr.predict(Xresampled)
return X, gpr.predict(X)
def multi_denoise(X, y, Xresampled=None, random_state=None):
"""Perform `denoise` along each column of `y` independently."""
y = np.stack(
[
denoise(X, y[:, i], Xresampled=Xresampled, random_state=random_state)[1]
for i in range(y.shape[1])
],
axis=1,
)
if Xresampled is not None:
return Xresampled, y
return X, y