PySR / benchmarks /hyperparamopt.py
MilesCranmer's picture
Update hyperparam optimizer script
8df173b
raw
history blame
6.2 kB
"""Start a hyperoptimization from a single node"""
import sys
import numpy as np
import pickle as pkl
import hyperopt
from hyperopt import hp, fmin, tpe, Trials
import pysr
import time
import contextlib
import numpy as np
@contextlib.contextmanager
def temp_seed(seed):
state = np.random.get_state()
np.random.seed(seed)
try:
yield
finally:
np.random.set_state(state)
#Change the following code to your file
################################################################################
TRIALS_FOLDER = 'trials'
NUMBER_TRIALS_PER_RUN = 1
def run_trial(args):
"""Evaluate the model loss using the hyperparams in args
:args: A dictionary containing all hyperparameters
:returns: Dict with status and loss from cross-validation
"""
print("Running on", args)
args['niterations'] = 100
args['npop'] = 100
args['ncyclesperiteration'] = 1000
args['topn'] = 10
args['parsimony'] = 0.0
args['useFrequency'] = True
args['annealing'] = True
if args['npop'] < 20 or args['ncyclesperiteration'] < 3:
print("Bad parameters")
return {'status': 'ok', 'loss': np.inf}
args['weightDoNothing'] = 1.0
ntrials = 3
with temp_seed(0):
X = np.random.randn(100, 10)*3
eval_str = [
"np.sign(X[:, 2])*np.abs(X[:, 2])**2.5 + 5*np.cos(X[:, 3]) - 5",
"np.exp(X[:, 0]/2) + 12.0 + np.log(np.abs(X[:, 0])*10 + 1)",
"(np.exp(X[:, 3]) + 3)/(np.abs(X[:, 1]) + np.cos(X[:, 0]) + 1.1)",
"X[:, 0] * np.sin(2*np.pi * (X[:, 1] * X[:, 2] - X[:, 3] / X[:, 4])) + 3.0"
]
print(f"Starting", str(args))
try:
trials = []
for i in range(len(eval_str)):
print(f"Starting test {i}")
for j in range(ntrials):
print(f"Starting trial {j}")
y = eval(eval_str[i])
trial = pysr.pysr(X, y,
procs=4,
populations=20,
binary_operators=["plus", "mult", "pow", "div"],
unary_operators=["cos", "exp", "sin", "logm", "abs"],
maxsize=25,
constraints={'pow': (-1, 1)},
**args)
if len(trial) == 0: raise ValueError
trials.append(
np.min(trial['MSE'])**0.5 / np.std(eval(eval_str[i-1]))
)
print(f"Test {i} trial {j} with", str(args), f"got {trials[-1]}")
except ValueError:
print(f"Broken", str(args))
return {
'status': 'ok', # or 'fail' if nan loss
'loss': np.inf
}
loss = np.average(trials)
print(f"Finished with {loss}", str(args))
return {
'status': 'ok', # or 'fail' if nan loss
'loss': loss
}
space = {
'alpha': hp.lognormal('alpha', np.log(10.0), 1.0),
'fractionReplacedHof': hp.lognormal('fractionReplacedHof', np.log(0.1), 1.0),
'fractionReplaced': hp.lognormal('fractionReplaced', np.log(0.1), 1.0),
'perturbationFactor': hp.lognormal('perturbationFactor', np.log(1.0), 1.0),
'weightMutateConstant': hp.lognormal('weightMutateConstant', np.log(4.0), 1.0),
'weightMutateOperator': hp.lognormal('weightMutateOperator', np.log(0.5), 1.0),
'weightAddNode': hp.lognormal('weightAddNode', np.log(0.5), 1.0),
'weightInsertNode': hp.lognormal('weightInsertNode', np.log(0.5), 1.0),
'weightDeleteNode': hp.lognormal('weightDeleteNode', np.log(0.5), 1.0),
'weightSimplify': hp.lognormal('weightSimplify', np.log(0.05), 1.0),
'weightRandomize': hp.lognormal('weightRandomize', np.log(0.25), 1.0),
}
################################################################################
def merge_trials(trials1, trials2_slice):
"""Merge two hyperopt trials objects
:trials1: The primary trials object
:trials2_slice: A slice of the trials object to be merged,
obtained with, e.g., trials2.trials[:10]
:returns: The merged trials object
"""
max_tid = 0
if len(trials1.trials) > 0:
max_tid = max([trial['tid'] for trial in trials1.trials])
for trial in trials2_slice:
tid = trial['tid'] + max_tid + 1
hyperopt_trial = Trials().new_trial_docs(
tids=[None],
specs=[None],
results=[None],
miscs=[None])
hyperopt_trial[0] = trial
hyperopt_trial[0]['tid'] = tid
hyperopt_trial[0]['misc']['tid'] = tid
for key in hyperopt_trial[0]['misc']['idxs'].keys():
hyperopt_trial[0]['misc']['idxs'][key] = [tid]
trials1.insert_trial_docs(hyperopt_trial)
trials1.refresh()
return trials1
loaded_fnames = []
trials = None
# Run new hyperparameter trials until killed
while True:
np.random.seed()
# Load up all runs:
import glob
path = TRIALS_FOLDER + '/*.pkl'
for fname in glob.glob(path):
if fname in loaded_fnames:
continue
trials_obj = pkl.load(open(fname, 'rb'))
n_trials = trials_obj['n']
trials_obj = trials_obj['trials']
if len(loaded_fnames) == 0:
trials = trials_obj
else:
print("Merging trials")
trials = merge_trials(trials, trials_obj.trials[-n_trials:])
loaded_fnames.append(fname)
print("Loaded trials", len(loaded_fnames))
if len(loaded_fnames) == 0:
trials = Trials()
n = NUMBER_TRIALS_PER_RUN
try:
best = fmin(run_trial,
space=space,
algo=tpe.suggest,
max_evals=n + len(trials.trials),
trials=trials,
verbose=1,
rstate=np.random.RandomState(np.random.randint(1,10**6))
)
except hyperopt.exceptions.AllTrialsFailed:
continue
print('current best', best)
hyperopt_trial = Trials()
# Merge with empty trials dataset:
save_trials = merge_trials(hyperopt_trial, trials.trials[-n:])
new_fname = TRIALS_FOLDER + '/' + str(np.random.randint(0, sys.maxsize)) + str(time.time()) + '.pkl'
pkl.dump({'trials': save_trials, 'n': n}, open(new_fname, 'wb'))
loaded_fnames.append(new_fname)