Spaces:
Sleeping
Sleeping
"""Start a hyperoptimization from a single node""" | |
import sys | |
import numpy as np | |
import pickle as pkl | |
import hyperopt | |
from hyperopt import hp, fmin, tpe, Trials | |
import pysr | |
import time | |
import contextlib | |
def temp_seed(seed): | |
state = np.random.get_state() | |
np.random.seed(seed) | |
try: | |
yield | |
finally: | |
np.random.set_state(state) | |
# Change the following code to your file | |
################################################################################ | |
TRIALS_FOLDER = "trials" | |
NUMBER_TRIALS_PER_RUN = 1 | |
def run_trial(args): | |
"""Evaluate the model loss using the hyperparams in args | |
:args: A dictionary containing all hyperparameters | |
:returns: Dict with status and loss from cross-validation | |
""" | |
print("Running on", args) | |
args["niterations"] = 100 | |
args["npop"] = 100 | |
args["ncyclesperiteration"] = 1000 | |
args["topn"] = 10 | |
args["parsimony"] = 0.0 | |
args["useFrequency"] = True | |
args["annealing"] = True | |
if args["npop"] < 20 or args["ncyclesperiteration"] < 3: | |
print("Bad parameters") | |
return {"status": "ok", "loss": np.inf} | |
args["weightDoNothing"] = 1.0 | |
ntrials = 3 | |
with temp_seed(0): | |
X = np.random.randn(100, 10) * 3 | |
eval_str = [ | |
"np.sign(X[:, 2])*np.abs(X[:, 2])**2.5 + 5*np.cos(X[:, 3]) - 5", | |
"np.exp(X[:, 0]/2) + 12.0 + np.log(np.abs(X[:, 0])*10 + 1)", | |
"(np.exp(X[:, 3]) + 3)/(np.abs(X[:, 1]) + np.cos(X[:, 0]) + 1.1)", | |
"X[:, 0] * np.sin(2*np.pi * (X[:, 1] * X[:, 2] - X[:, 3] / X[:, 4])) + 3.0", | |
] | |
print(f"Starting", str(args)) | |
try: | |
trials = [] | |
for i in range(len(eval_str)): | |
print(f"Starting test {i}") | |
for j in range(ntrials): | |
print(f"Starting trial {j}") | |
y = eval(eval_str[i]) | |
trial = pysr.pysr( | |
X, | |
y, | |
procs=4, | |
populations=20, | |
binary_operators=["plus", "mult", "pow", "div"], | |
unary_operators=["cos", "exp", "sin", "logm", "abs"], | |
maxsize=25, | |
constraints={"pow": (-1, 1)}, | |
**args, | |
) | |
if len(trial) == 0: | |
raise ValueError | |
trials.append( | |
np.min(trial["MSE"]) ** 0.5 / np.std(eval(eval_str[i - 1])) | |
) | |
print(f"Test {i} trial {j} with", str(args), f"got {trials[-1]}") | |
except ValueError: | |
print(f"Broken", str(args)) | |
return {"status": "ok", "loss": np.inf} # or 'fail' if nan loss | |
loss = np.average(trials) | |
print(f"Finished with {loss}", str(args)) | |
return {"status": "ok", "loss": loss} # or 'fail' if nan loss | |
space = { | |
"alpha": hp.lognormal("alpha", np.log(10.0), 1.0), | |
"fractionReplacedHof": hp.lognormal("fractionReplacedHof", np.log(0.1), 1.0), | |
"fractionReplaced": hp.lognormal("fractionReplaced", np.log(0.1), 1.0), | |
"perturbationFactor": hp.lognormal("perturbationFactor", np.log(1.0), 1.0), | |
"weightMutateConstant": hp.lognormal("weightMutateConstant", np.log(4.0), 1.0), | |
"weightMutateOperator": hp.lognormal("weightMutateOperator", np.log(0.5), 1.0), | |
"weightAddNode": hp.lognormal("weightAddNode", np.log(0.5), 1.0), | |
"weightInsertNode": hp.lognormal("weightInsertNode", np.log(0.5), 1.0), | |
"weightDeleteNode": hp.lognormal("weightDeleteNode", np.log(0.5), 1.0), | |
"weightSimplify": hp.lognormal("weightSimplify", np.log(0.05), 1.0), | |
"weightRandomize": hp.lognormal("weightRandomize", np.log(0.25), 1.0), | |
} | |
################################################################################ | |
def merge_trials(trials1, trials2_slice): | |
"""Merge two hyperopt trials objects | |
:trials1: The primary trials object | |
:trials2_slice: A slice of the trials object to be merged, | |
obtained with, e.g., trials2.trials[:10] | |
:returns: The merged trials object | |
""" | |
max_tid = 0 | |
if len(trials1.trials) > 0: | |
max_tid = max([trial["tid"] for trial in trials1.trials]) | |
for trial in trials2_slice: | |
tid = trial["tid"] + max_tid + 1 | |
hyperopt_trial = Trials().new_trial_docs( | |
tids=[None], specs=[None], results=[None], miscs=[None] | |
) | |
hyperopt_trial[0] = trial | |
hyperopt_trial[0]["tid"] = tid | |
hyperopt_trial[0]["misc"]["tid"] = tid | |
for key in hyperopt_trial[0]["misc"]["idxs"].keys(): | |
hyperopt_trial[0]["misc"]["idxs"][key] = [tid] | |
trials1.insert_trial_docs(hyperopt_trial) | |
trials1.refresh() | |
return trials1 | |
loaded_fnames = [] | |
trials = None | |
# Run new hyperparameter trials until killed | |
while True: | |
np.random.seed() | |
# Load up all runs: | |
import glob | |
path = TRIALS_FOLDER + "/*.pkl" | |
for fname in glob.glob(path): | |
if fname in loaded_fnames: | |
continue | |
trials_obj = pkl.load(open(fname, "rb")) | |
n_trials = trials_obj["n"] | |
trials_obj = trials_obj["trials"] | |
if len(loaded_fnames) == 0: | |
trials = trials_obj | |
else: | |
print("Merging trials") | |
trials = merge_trials(trials, trials_obj.trials[-n_trials:]) | |
loaded_fnames.append(fname) | |
print("Loaded trials", len(loaded_fnames)) | |
if len(loaded_fnames) == 0: | |
trials = Trials() | |
n = NUMBER_TRIALS_PER_RUN | |
try: | |
best = fmin( | |
run_trial, | |
space=space, | |
algo=tpe.suggest, | |
max_evals=n + len(trials.trials), | |
trials=trials, | |
verbose=1, | |
rstate=np.random.RandomState(np.random.randint(1, 10 ** 6)), | |
) | |
except hyperopt.exceptions.AllTrialsFailed: | |
continue | |
print("current best", best) | |
hyperopt_trial = Trials() | |
# Merge with empty trials dataset: | |
save_trials = merge_trials(hyperopt_trial, trials.trials[-n:]) | |
new_fname = ( | |
TRIALS_FOLDER | |
+ "/" | |
+ str(np.random.randint(0, sys.maxsize)) | |
+ str(time.time()) | |
+ ".pkl" | |
) | |
pkl.dump({"trials": save_trials, "n": n}, open(new_fname, "wb")) | |
loaded_fnames.append(new_fname) | |