Spaces:
Sleeping
Sleeping
import unittest | |
import numpy as np | |
from pysr import sympy2jax, get_hof | |
import pandas as pd | |
from jax import numpy as jnp | |
from jax import random | |
from jax import grad | |
import sympy | |
class TestJAX(unittest.TestCase): | |
def setUp(self): | |
np.random.seed(0) | |
def test_sympy2jax(self): | |
x, y, z = sympy.symbols("x y z") | |
cosx = 1.0 * sympy.cos(x) + y | |
key = random.PRNGKey(0) | |
X = random.normal(key, (1000, 2)) | |
true = 1.0 * jnp.cos(X[:, 0]) + X[:, 1] | |
f, params = sympy2jax(cosx, [x, y, z]) | |
self.assertTrue(jnp.all(jnp.isclose(f(X, params), true)).item()) | |
def test_pipeline(self): | |
X = np.random.randn(100, 10) | |
equations = pd.DataFrame( | |
{ | |
"Equation": ["1.0", "cos(x0)", "square(cos(x0))"], | |
"MSE": [1.0, 0.1, 1e-5], | |
"Complexity": [1, 2, 3], | |
} | |
) | |
equations["Complexity MSE Equation".split(" ")].to_csv( | |
"equation_file.csv.bkup", sep="|" | |
) | |
equations = get_hof( | |
"equation_file.csv", | |
n_features=2, | |
variables_names="x1 x2 x3".split(" "), | |
extra_sympy_mappings={}, | |
output_jax_format=True, | |
multioutput=False, | |
nout=1, | |
selection=[1, 2, 3], | |
) | |
jformat = equations.iloc[-1].jax_format | |
np.testing.assert_almost_equal( | |
np.array(jformat["callable"](jnp.array(X), jformat["parameters"])), | |
np.square(np.cos(X[:, 1])), # Select feature 1 | |
decimal=4, | |
) | |