PySR / pysr /julia_helpers.py
MilesCranmer's picture
Set up `julia_kwargs` to initialize Julia binary
69bfcd2
raw
history blame
9.14 kB
"""Functions for initializing the Julia environment and installing deps."""
import sys
import subprocess
import warnings
from pathlib import Path
import os
from julia.api import JuliaError
from .version import __version__, __symbolic_regression_jl_version__
juliainfo = None
julia_initialized = False
def _load_juliainfo():
"""Execute julia.core.JuliaInfo.load(), and store as juliainfo."""
global juliainfo
if juliainfo is None:
from julia.core import JuliaInfo
try:
juliainfo = JuliaInfo.load(julia="julia")
except FileNotFoundError:
env_path = os.environ["PATH"]
raise FileNotFoundError(
f"Julia is not installed in your PATH. Please install Julia and add it to your PATH.\n\nCurrent PATH: {env_path}",
)
return juliainfo
def _get_julia_env_dir():
# Have to manually get env dir:
try:
julia_env_dir_str = subprocess.run(
["julia", "-e using Pkg; print(Pkg.envdir())"],
capture_output=True,
env=os.environ,
).stdout.decode()
except FileNotFoundError:
env_path = os.environ["PATH"]
raise FileNotFoundError(
f"Julia is not installed in your PATH. Please install Julia and add it to your PATH.\n\nCurrent PATH: {env_path}",
)
return Path(julia_env_dir_str)
def _set_julia_project_env(julia_project, is_shared):
if is_shared:
if is_julia_version_greater_eq(version=(1, 7, 0)):
os.environ["JULIA_PROJECT"] = "@" + str(julia_project)
else:
julia_env_dir = _get_julia_env_dir()
os.environ["JULIA_PROJECT"] = str(julia_env_dir / julia_project)
else:
os.environ["JULIA_PROJECT"] = str(julia_project)
def _get_io_arg(quiet):
io = "devnull" if quiet else "stderr"
io_arg = f"io={io}" if is_julia_version_greater_eq(version=(1, 6, 0)) else ""
return io_arg
def install(julia_project=None, quiet=False): # pragma: no cover
"""
Install PyCall.jl and all required dependencies for SymbolicRegression.jl.
Also updates the local Julia registry.
"""
import julia
_julia_version_assertion()
# Set JULIA_PROJECT so that we install in the pysr environment
processed_julia_project, is_shared = _process_julia_project(julia_project)
_set_julia_project_env(processed_julia_project, is_shared)
julia.install(quiet=quiet)
Main = init_julia(julia_project, quiet=quiet)
io_arg = _get_io_arg(quiet)
if is_shared:
# Install SymbolicRegression.jl:
_add_sr_to_julia_project(Main, io_arg)
Main.eval("using Pkg")
Main.eval(f"Pkg.instantiate({io_arg})")
Main.eval(f"Pkg.precompile({io_arg})")
if not quiet:
warnings.warn(
"It is recommended to restart Python after installing PySR's dependencies,"
" so that the Julia environment is properly initialized."
)
def _import_error():
return """
Required dependencies are not installed or built. Run the following code in the Python REPL:
>>> import pysr
>>> pysr.install()
"""
def _process_julia_project(julia_project):
if julia_project is None:
is_shared = True
processed_julia_project = f"pysr-{__version__}"
elif julia_project[0] == "@":
is_shared = True
processed_julia_project = julia_project[1:]
else:
is_shared = False
processed_julia_project = Path(julia_project)
return processed_julia_project, is_shared
def is_julia_version_greater_eq(juliainfo=None, version=(1, 6, 0)):
"""Check if Julia version is greater than specified version."""
if juliainfo is None:
juliainfo = _load_juliainfo()
current_version = (
juliainfo.version_major,
juliainfo.version_minor,
juliainfo.version_patch,
)
return current_version >= version
def _check_for_conflicting_libraries(): # pragma: no cover
"""Check whether there are conflicting modules, and display warnings."""
# See https://github.com/pytorch/pytorch/issues/78829: importing
# pytorch before running `pysr.fit` causes a segfault.
torch_is_loaded = "torch" in sys.modules
if torch_is_loaded:
warnings.warn(
"`torch` was loaded before the Julia instance started. "
"This may cause a segfault when running `PySRRegressor.fit`. "
"To avoid this, please run `pysr.julia_helpers.init_julia()` *before* "
"importing `torch`. "
"For updates, see https://github.com/pytorch/pytorch/issues/78829"
)
def init_julia(julia_project=None, quiet=False, julia_kwargs=None):
"""Initialize julia binary, turning off compiled modules if needed."""
global julia_initialized
if not julia_initialized:
_check_for_conflicting_libraries()
if julia_kwargs is None:
julia_kwargs = {}
from julia.core import JuliaInfo, UnsupportedPythonError
_julia_version_assertion()
processed_julia_project, is_shared = _process_julia_project(julia_project)
_set_julia_project_env(processed_julia_project, is_shared)
try:
info = JuliaInfo.load(julia="julia")
except FileNotFoundError:
env_path = os.environ["PATH"]
raise FileNotFoundError(
f"Julia is not installed in your PATH. Please install Julia and add it to your PATH.\n\nCurrent PATH: {env_path}",
)
if not info.is_pycall_built():
raise ImportError(_import_error())
from julia.core import Julia
Main = None
try:
jl = Julia(**julia_kwargs)
from julia import Main as _Main
Main = _Main
except UnsupportedPythonError:
# Static python binary, so we turn off pre-compiled modules.
jl = Julia(compiled_modules=False, **julia_kwargs)
from julia import Main as _Main
Main = _Main
if julia_initialized:
Main.eval("using Pkg")
io_arg = _get_io_arg(quiet)
# Can't pass IO to Julia call as it evaluates to PyObject, so just directly
# use Main.eval:
Main.eval(
f'Pkg.activate("{_escape_filename(processed_julia_project)}",'
f"shared = Bool({int(is_shared)}), "
f"{io_arg})"
)
julia_initialized = True
return Main
def _add_sr_to_julia_project(Main, io_arg):
Main.eval("using Pkg")
Main.sr_spec = Main.PackageSpec(
name="SymbolicRegression",
url="https://github.com/MilesCranmer/SymbolicRegression.jl",
rev="v" + __symbolic_regression_jl_version__,
)
Main.clustermanagers_spec = Main.PackageSpec(
name="ClusterManagers",
url="https://github.com/JuliaParallel/ClusterManagers.jl",
rev="14e7302f068794099344d5d93f71979aaf4fbeb3",
)
Main.eval(f"Pkg.add([sr_spec, clustermanagers_spec], {io_arg})")
def _escape_filename(filename):
"""Turn a path into a string with correctly escaped backslashes."""
str_repr = str(filename)
str_repr = str_repr.replace("\\", "\\\\")
return str_repr
def _julia_version_assertion():
if not is_julia_version_greater_eq(version=(1, 6, 0)):
raise NotImplementedError(
"PySR requires Julia 1.6.0 or greater. "
"Please update your Julia installation."
)
def _backend_version_assertion(Main):
try:
backend_version = Main.eval("string(SymbolicRegression.PACKAGE_VERSION)")
expected_backend_version = __symbolic_regression_jl_version__
if backend_version != expected_backend_version: # pragma: no cover
warnings.warn(
f"PySR backend (SymbolicRegression.jl) version {backend_version} "
"does not match expected version {expected_backend_version}. "
"Things may break. "
"Please update your PySR installation with "
"`python -c 'import pysr; pysr.install()'`."
)
except JuliaError: # pragma: no cover
warnings.warn(
"You seem to have an outdated version of SymbolicRegression.jl. "
"Things may break. "
"Please update your PySR installation with "
"`python -c 'import pysr; pysr.install()'`."
)
def _load_cluster_manager(Main, cluster_manager):
Main.eval(f"import ClusterManagers: addprocs_{cluster_manager}")
return Main.eval(f"addprocs_{cluster_manager}")
def _update_julia_project(Main, is_shared, io_arg):
try:
if is_shared:
_add_sr_to_julia_project(Main, io_arg)
Main.eval(f"Pkg.resolve({io_arg})")
except (JuliaError, RuntimeError) as e:
raise ImportError(_import_error()) from e
def _load_backend(Main):
try:
# Load namespace, so that various internal operators work:
Main.eval("using SymbolicRegression")
except (JuliaError, RuntimeError) as e:
raise ImportError(_import_error()) from e
_backend_version_assertion(Main)
# Load Julia package SymbolicRegression.jl
from julia import SymbolicRegression
return SymbolicRegression