Spaces:
Sleeping
Sleeping
import os | |
import sys | |
import numpy as np | |
import pandas as pd | |
import sympy | |
from sympy import sympify, lambdify | |
import re | |
import tempfile | |
import shutil | |
from pathlib import Path | |
from datetime import datetime | |
import warnings | |
from multiprocessing import cpu_count | |
from sklearn.base import BaseEstimator, RegressorMixin | |
from collections import OrderedDict | |
from hashlib import sha256 | |
from .version import __version__, __symbolic_regression_jl_version__ | |
def install(julia_project=None, quiet=False): # pragma: no cover | |
"""Install PyCall.jl and all required dependencies for SymbolicRegression.jl. | |
Also updates the local Julia registry.""" | |
import julia | |
julia.install(quiet=quiet) | |
julia_project, is_shared = _get_julia_project(julia_project) | |
Main = init_julia() | |
Main.eval("using Pkg") | |
io = "devnull" if quiet else "stderr" | |
io_arg = f"io={io}" if is_julia_version_greater_eq(Main, "1.6") else "" | |
# Can't pass IO to Julia call as it evaluates to PyObject, so just directly | |
# use Main.eval: | |
Main.eval( | |
f'Pkg.activate("{_escape_filename(julia_project)}", shared = Bool({int(is_shared)}), {io_arg})' | |
) | |
if is_shared: | |
# Install SymbolicRegression.jl: | |
_add_sr_to_julia_project(Main, io_arg) | |
Main.eval(f"Pkg.instantiate({io_arg})") | |
Main.eval(f"Pkg.precompile({io_arg})") | |
if not quiet: | |
warnings.warn( | |
"It is recommended to restart Python after installing PySR's dependencies," | |
" so that the Julia environment is properly initialized." | |
) | |
def import_error_string(julia_project=None): | |
s = f""" | |
Required dependencies are not installed or built. Run the following code in the Python REPL: | |
>>> import pysr | |
>>> pysr.install() | |
""" | |
if julia_project is not None: | |
s += f""" | |
Tried to activate project {julia_project} but failed.""" | |
return s | |
Main = None | |
already_ran = False | |
sympy_mappings = { | |
"div": lambda x, y: x / y, | |
"mult": lambda x, y: x * y, | |
"sqrt_abs": lambda x: sympy.sqrt(abs(x)), | |
"square": lambda x: x**2, | |
"cube": lambda x: x**3, | |
"plus": lambda x, y: x + y, | |
"sub": lambda x, y: x - y, | |
"neg": lambda x: -x, | |
"pow": lambda x, y: abs(x) ** y, | |
"cos": sympy.cos, | |
"sin": sympy.sin, | |
"tan": sympy.tan, | |
"cosh": sympy.cosh, | |
"sinh": sympy.sinh, | |
"tanh": sympy.tanh, | |
"exp": sympy.exp, | |
"acos": sympy.acos, | |
"asin": sympy.asin, | |
"atan": sympy.atan, | |
"acosh": lambda x: sympy.acosh(abs(x) + 1), | |
"acosh_abs": lambda x: sympy.acosh(abs(x) + 1), | |
"asinh": sympy.asinh, | |
"atanh": lambda x: sympy.atanh(sympy.Mod(x + 1, 2) - 1), | |
"atanh_clip": lambda x: sympy.atanh(sympy.Mod(x + 1, 2) - 1), | |
"abs": abs, | |
"mod": sympy.Mod, | |
"erf": sympy.erf, | |
"erfc": sympy.erfc, | |
"log_abs": lambda x: sympy.log(abs(x)), | |
"log10_abs": lambda x: sympy.log(abs(x), 10), | |
"log2_abs": lambda x: sympy.log(abs(x), 2), | |
"log1p_abs": lambda x: sympy.log(abs(x) + 1), | |
"floor": sympy.floor, | |
"ceil": sympy.ceiling, | |
"sign": sympy.sign, | |
"gamma": sympy.gamma, | |
} | |
def pysr(X, y, weights=None, **kwargs): | |
warnings.warn( | |
"Calling `pysr` is deprecated. Please use `model = PySRRegressor(**params); model.fit(X, y)` going forward.", | |
DeprecationWarning, | |
) | |
model = PySRRegressor(**kwargs) | |
model.fit(X, y, weights=weights) | |
return model.equations | |
def _handle_constraints(binary_operators, unary_operators, constraints): | |
for op in unary_operators: | |
if op not in constraints: | |
constraints[op] = -1 | |
for op in binary_operators: | |
if op not in constraints: | |
constraints[op] = (-1, -1) | |
if op in ["plus", "sub"]: | |
if constraints[op][0] != constraints[op][1]: | |
raise NotImplementedError( | |
"You need equal constraints on both sides for - and *, due to simplification strategies." | |
) | |
elif op == "mult": | |
# Make sure the complex expression is in the left side. | |
if constraints[op][0] == -1: | |
continue | |
if constraints[op][1] == -1 or constraints[op][0] < constraints[op][1]: | |
constraints[op][0], constraints[op][1] = ( | |
constraints[op][1], | |
constraints[op][0], | |
) | |
def _create_inline_operators(binary_operators, unary_operators): | |
global Main | |
for op_list in [binary_operators, unary_operators]: | |
for i, op in enumerate(op_list): | |
is_user_defined_operator = "(" in op | |
if is_user_defined_operator: | |
Main.eval(op) | |
# Cut off from the first non-alphanumeric char: | |
first_non_char = [j for j, char in enumerate(op) if char == "("][0] | |
function_name = op[:first_non_char] | |
# Assert that function_name only contains | |
# alphabetical characters, numbers, | |
# and underscores: | |
if not re.match(r"^[a-zA-Z0-9_]+$", function_name): | |
raise ValueError( | |
f"Invalid function name {function_name}. " | |
"Only alphanumeric characters, numbers, and underscores are allowed." | |
) | |
op_list[i] = function_name | |
def _handle_feature_selection(X, select_k_features, y, variable_names): | |
if select_k_features is not None: | |
selection = run_feature_selection(X, y, select_k_features) | |
print(f"Using features {[variable_names[i] for i in selection]}") | |
X = X[:, selection] | |
else: | |
selection = None | |
return X, selection | |
def _check_assertions( | |
X, | |
binary_operators, | |
unary_operators, | |
use_custom_variable_names, | |
variable_names, | |
weights, | |
y, | |
): | |
# Check for potential errors before they happen | |
assert len(unary_operators) + len(binary_operators) > 0 | |
assert len(X.shape) == 2 | |
assert len(y.shape) in [1, 2] | |
assert X.shape[0] == y.shape[0] | |
if weights is not None: | |
assert weights.shape == y.shape | |
assert X.shape[0] == weights.shape[0] | |
if use_custom_variable_names: | |
assert len(variable_names) == X.shape[1] | |
def run_feature_selection(X, y, select_k_features): | |
"""Use a gradient boosting tree regressor as a proxy for finding | |
the k most important features in X, returning indices for those | |
features as output.""" | |
from sklearn.ensemble import RandomForestRegressor | |
from sklearn.feature_selection import SelectFromModel | |
clf = RandomForestRegressor(n_estimators=100, max_depth=3, random_state=0) | |
clf.fit(X, y) | |
selector = SelectFromModel( | |
clf, threshold=-np.inf, max_features=select_k_features, prefit=True | |
) | |
return selector.get_support(indices=True) | |
def _escape_filename(filename): | |
"""Turns a file into a string representation with correctly escaped backslashes""" | |
str_repr = str(filename) | |
str_repr = str_repr.replace("\\", "\\\\") | |
return str_repr | |
def best(*args, **kwargs): | |
raise NotImplementedError( | |
"`best` has been deprecated. Please use the `PySRRegressor` interface. After fitting, you can return `.sympy()` to get the sympy representation of the best equation." | |
) | |
def best_row(*args, **kwargs): | |
raise NotImplementedError( | |
"`best_row` has been deprecated. Please use the `PySRRegressor` interface. After fitting, you can run `print(model)` to view the best equation, or `model.get_best()` to return the best equation's row in `model.equations`." | |
) | |
def best_tex(*args, **kwargs): | |
raise NotImplementedError( | |
"`best_tex` has been deprecated. Please use the `PySRRegressor` interface. After fitting, you can return `.latex()` to get the sympy representation of the best equation." | |
) | |
def best_callable(*args, **kwargs): | |
raise NotImplementedError( | |
"`best_callable` has been deprecated. Please use the `PySRRegressor` interface. After fitting, you can use `.predict(X)` to use the best callable." | |
) | |
def _denoise(X, y, Xresampled=None): | |
"""Denoise the dataset using a Gaussian process""" | |
from sklearn.gaussian_process import GaussianProcessRegressor | |
from sklearn.gaussian_process.kernels import RBF, WhiteKernel, ConstantKernel | |
gp_kernel = RBF(np.ones(X.shape[1])) + WhiteKernel(1e-1) + ConstantKernel() | |
gpr = GaussianProcessRegressor(kernel=gp_kernel, n_restarts_optimizer=50) | |
gpr.fit(X, y) | |
if Xresampled is not None: | |
return Xresampled, gpr.predict(Xresampled) | |
return X, gpr.predict(X) | |
class CallableEquation: | |
"""Simple wrapper for numpy lambda functions built with sympy""" | |
def __init__(self, sympy_symbols, eqn, selection=None, variable_names=None): | |
self._sympy = eqn | |
self._sympy_symbols = sympy_symbols | |
self._selection = selection | |
self._variable_names = variable_names | |
self._lambda = lambdify(sympy_symbols, eqn) | |
def __repr__(self): | |
return f"PySRFunction(X=>{self._sympy})" | |
def __call__(self, X): | |
expected_shape = (X.shape[0],) | |
if isinstance(X, pd.DataFrame): | |
# Lambda function takes as argument: | |
return self._lambda(**{k: X[k].values for k in X.columns}) * np.ones( | |
expected_shape | |
) | |
elif self._selection is not None: | |
return self._lambda(*X[:, self._selection].T) * np.ones(expected_shape) | |
return self._lambda(*X.T) * np.ones(expected_shape) | |
def _get_julia_project(julia_project): | |
if julia_project is None: | |
is_shared = True | |
julia_project = f"pysr-{__version__}" | |
else: | |
is_shared = False | |
julia_project = Path(julia_project) | |
return julia_project, is_shared | |
def is_julia_version_greater_eq(Main, version="1.6"): | |
"""Check if Julia version is greater than specified version.""" | |
return Main.eval(f'VERSION >= v"{version}"') | |
def init_julia(): | |
"""Initialize julia binary, turning off compiled modules if needed.""" | |
from julia.core import JuliaInfo, UnsupportedPythonError | |
try: | |
info = JuliaInfo.load(julia="julia") | |
except FileNotFoundError: | |
env_path = os.environ["PATH"] | |
raise FileNotFoundError( | |
f"Julia is not installed in your PATH. Please install Julia and add it to your PATH.\n\nCurrent PATH: {env_path}", | |
) | |
if not info.is_pycall_built(): | |
raise ImportError(import_error_string()) | |
Main = None | |
try: | |
from julia import Main as _Main | |
Main = _Main | |
except UnsupportedPythonError: | |
# Static python binary, so we turn off pre-compiled modules. | |
from julia.core import Julia | |
jl = Julia(compiled_modules=False) | |
from julia import Main as _Main | |
Main = _Main | |
return Main | |
def _add_sr_to_julia_project(Main, io_arg): | |
Main.spec = Main.PackageSpec( | |
name="SymbolicRegression", | |
url="https://github.com/MilesCranmer/SymbolicRegression.jl", | |
rev="v" + __symbolic_regression_jl_version__, | |
) | |
Main.eval(f"Pkg.add(spec, {io_arg})") | |
class PySRRegressor(BaseEstimator, RegressorMixin): | |
def __init__( | |
self, | |
model_selection="best", | |
*, | |
weights=None, | |
binary_operators=None, | |
unary_operators=None, | |
procs=cpu_count(), | |
loss="L2DistLoss()", | |
populations=15, | |
niterations=40, | |
ncyclesperiteration=550, | |
timeout_in_seconds=None, | |
alpha=0.1, | |
annealing=False, | |
fractionReplaced=0.000364, | |
fractionReplacedHof=0.035, | |
npop=33, | |
parsimony=0.0032, | |
migration=True, | |
hofMigration=True, | |
shouldOptimizeConstants=True, | |
topn=12, | |
weightAddNode=0.79, | |
weightDeleteNode=1.7, | |
weightDoNothing=0.21, | |
weightInsertNode=5.1, | |
weightMutateConstant=0.048, | |
weightMutateOperator=0.47, | |
weightRandomize=0.00023, | |
weightSimplify=0.0020, | |
crossoverProbability=0.066, | |
perturbationFactor=0.076, | |
extra_sympy_mappings=None, | |
extra_torch_mappings=None, | |
extra_jax_mappings=None, | |
equation_file=None, | |
verbosity=1e9, | |
update_verbosity=None, | |
progress=None, | |
maxsize=20, | |
fast_cycle=False, | |
maxdepth=None, | |
variable_names=None, | |
batching=False, | |
batchSize=50, | |
select_k_features=None, | |
warmupMaxsizeBy=0.0, | |
constraints=None, | |
useFrequency=True, | |
useFrequencyInTournament=True, | |
tempdir=None, | |
delete_tempfiles=True, | |
julia_project=None, | |
update=True, | |
temp_equation_file=False, | |
output_jax_format=False, | |
output_torch_format=False, | |
optimizer_algorithm="BFGS", | |
optimizer_nrestarts=2, | |
optimize_probability=0.14, | |
optimizer_iterations=8, | |
tournament_selection_n=10, | |
tournament_selection_p=0.86, | |
denoise=False, | |
Xresampled=None, | |
precision=32, | |
multithreading=None, | |
use_symbolic_utils=False, | |
skip_mutation_failures=True, | |
): | |
"""Initialize settings for an equation search in PySR. | |
Note: most default parameters have been tuned over several example | |
equations, but you should adjust `niterations`, | |
`binary_operators`, `unary_operators` to your requirements. | |
You can view more detailed explanations of the options on the | |
[options page](https://astroautomata.com/PySR/#/options) of the documentation. | |
:param model_selection: How to select a model. Can be 'accuracy' or 'best'. The default, 'best', will optimize a combination of complexity and accuracy. | |
:type model_selection: str | |
:param binary_operators: List of strings giving the binary operators in Julia's Base. Default is ["+", "-", "*", "/",]. | |
:type binary_operators: list | |
:param unary_operators: Same but for operators taking a single scalar. Default is []. | |
:type unary_operators: list | |
:param niterations: Number of iterations of the algorithm to run. The best equations are printed, and migrate between populations, at the end of each. | |
:type niterations: int | |
:param populations: Number of populations running. | |
:type populations: int | |
:param loss: String of Julia code specifying the loss function. Can either be a loss from LossFunctions.jl, or your own loss written as a function. Examples of custom written losses include: `myloss(x, y) = abs(x-y)` for non-weighted, or `myloss(x, y, w) = w*abs(x-y)` for weighted. Among the included losses, these are as follows. Regression: `LPDistLoss{P}()`, `L1DistLoss()`, `L2DistLoss()` (mean square), `LogitDistLoss()`, `HuberLoss(d)`, `L1EpsilonInsLoss(ϵ)`, `L2EpsilonInsLoss(ϵ)`, `PeriodicLoss(c)`, `QuantileLoss(τ)`. Classification: `ZeroOneLoss()`, `PerceptronLoss()`, `L1HingeLoss()`, `SmoothedL1HingeLoss(γ)`, `ModifiedHuberLoss()`, `L2MarginLoss()`, `ExpLoss()`, `SigmoidLoss()`, `DWDMarginLoss(q)`. | |
:type loss: str | |
:param denoise: Whether to use a Gaussian Process to denoise the data before inputting to PySR. Can help PySR fit noisy data. | |
:type denoise: bool | |
:param select_k_features: whether to run feature selection in Python using random forests, before passing to the symbolic regression code. None means no feature selection; an int means select that many features. | |
:type select_k_features: None/int | |
:param procs: Number of processes (=number of populations running). | |
:type procs: int | |
:param multithreading: Use multithreading instead of distributed backend. Default is yes. Using procs=0 will turn off both. | |
:type multithreading: bool | |
:param batching: whether to compare population members on small batches during evolution. Still uses full dataset for comparing against hall of fame. | |
:type batching: bool | |
:param batchSize: the amount of data to use if doing batching. | |
:type batchSize: int | |
:param maxsize: Max size of an equation. | |
:type maxsize: int | |
:param ncyclesperiteration: Number of total mutations to run, per 10 samples of the population, per iteration. | |
:type ncyclesperiteration: int | |
:param timeout_in_seconds: Make the search return early once this many seconds have passed. | |
:type timeout_in_seconds: float/int | |
:param alpha: Initial temperature. | |
:type alpha: float | |
:param annealing: Whether to use annealing. You should (and it is default). | |
:type annealing: bool | |
:param fractionReplaced: How much of population to replace with migrating equations from other populations. | |
:type fractionReplaced: float | |
:param fractionReplacedHof: How much of population to replace with migrating equations from hall of fame. | |
:type fractionReplacedHof: float | |
:param npop: Number of individuals in each population | |
:type npop: int | |
:param parsimony: Multiplicative factor for how much to punish complexity. | |
:type parsimony: float | |
:param migration: Whether to migrate. | |
:type migration: bool | |
:param hofMigration: Whether to have the hall of fame migrate. | |
:type hofMigration: bool | |
:param shouldOptimizeConstants: Whether to numerically optimize constants (Nelder-Mead/Newton) at the end of each iteration. | |
:type shouldOptimizeConstants: bool | |
:param topn: How many top individuals migrate from each population. | |
:type topn: int | |
:param perturbationFactor: Constants are perturbed by a max factor of (perturbationFactor*T + 1). Either multiplied by this or divided by this. | |
:type perturbationFactor: float | |
:param weightAddNode: Relative likelihood for mutation to add a node | |
:type weightAddNode: float | |
:param weightInsertNode: Relative likelihood for mutation to insert a node | |
:type weightInsertNode: float | |
:param weightDeleteNode: Relative likelihood for mutation to delete a node | |
:type weightDeleteNode: float | |
:param weightDoNothing: Relative likelihood for mutation to leave the individual | |
:type weightDoNothing: float | |
:param weightMutateConstant: Relative likelihood for mutation to change the constant slightly in a random direction. | |
:type weightMutateConstant: float | |
:param weightMutateOperator: Relative likelihood for mutation to swap an operator. | |
:type weightMutateOperator: float | |
:param weightRandomize: Relative likelihood for mutation to completely delete and then randomly generate the equation | |
:type weightRandomize: float | |
:param weightSimplify: Relative likelihood for mutation to simplify constant parts by evaluation | |
:type weightSimplify: float | |
:param crossoverProbability: Absolute probability of crossover-type genetic operation, instead of a mutation. | |
:type crossoverProbability: float | |
:param equation_file: Where to save the files (.csv separated by |) | |
:type equation_file: str | |
:param verbosity: What verbosity level to use. 0 means minimal print statements. | |
:type verbosity: int | |
:param update_verbosity: What verbosity level to use for package updates. Will take value of `verbosity` if not given. | |
:type update_verbosity: int | |
:param progress: Whether to use a progress bar instead of printing to stdout. | |
:type progress: bool | |
:param maxdepth: Max depth of an equation. You can use both maxsize and maxdepth. maxdepth is by default set to = maxsize, which means that it is redundant. | |
:type maxdepth: int | |
:param fast_cycle: (experimental) - batch over population subsamples. This is a slightly different algorithm than regularized evolution, but does cycles 15% faster. May be algorithmically less efficient. | |
:type fast_cycle: bool | |
:param variable_names: a list of names for the variables, other than "x0", "x1", etc. | |
:type variable_names: list | |
:param warmupMaxsizeBy: whether to slowly increase max size from a small number up to the maxsize (if greater than 0). If greater than 0, says the fraction of training time at which the current maxsize will reach the user-passed maxsize. | |
:type warmupMaxsizeBy: float | |
:param constraints: dictionary of int (unary) or 2-tuples (binary), this enforces maxsize constraints on the individual arguments of operators. E.g., `'pow': (-1, 1)` says that power laws can have any complexity left argument, but only 1 complexity exponent. Use this to force more interpretable solutions. | |
:type constraints: dict | |
:param useFrequency: whether to measure the frequency of complexities, and use that instead of parsimony to explore equation space. Will naturally find equations of all complexities. | |
:type useFrequency: bool | |
:param useFrequencyInTournament: whether to use the frequency mentioned above in the tournament, rather than just the simulated annealing. | |
:type useFrequencyInTournament: bool | |
:param tempdir: directory for the temporary files | |
:type tempdir: str/None | |
:param delete_tempfiles: whether to delete the temporary files after finishing | |
:type delete_tempfiles: bool | |
:param julia_project: a Julia environment location containing a Project.toml (and potentially the source code for SymbolicRegression.jl). Default gives the Python package directory, where a Project.toml file should be present from the install. | |
:type julia_project: str/None | |
:param update: Whether to automatically update Julia packages. | |
:type update: bool | |
:param temp_equation_file: Whether to put the hall of fame file in the temp directory. Deletion is then controlled with the delete_tempfiles argument. | |
:type temp_equation_file: bool | |
:param output_jax_format: Whether to create a 'jax_format' column in the output, containing jax-callable functions and the default parameters in a jax array. | |
:type output_jax_format: bool | |
:param output_torch_format: Whether to create a 'torch_format' column in the output, containing a torch module with trainable parameters. | |
:type output_torch_format: bool | |
:param tournament_selection_n: Number of expressions to consider in each tournament. | |
:type tournament_selection_n: int | |
:param tournament_selection_p: Probability of selecting the best expression in each tournament. The probability will decay as p*(1-p)^n for other expressions, sorted by loss. | |
:type tournament_selection_p: float | |
:param precision: What precision to use for the data. By default this is 32 (float32), but you can select 64 or 16 as well. | |
:type precision: int | |
:param use_symbolic_utils: Whether to use SymbolicUtils during simplification. | |
:type use_symbolic_utils: bool | |
:param skip_mutation_failures: Whether to skip mutation and crossover failures, rather than simply re-sampling the current member. | |
:type skip_mutation_failures: bool | |
:returns: Initialized model. Call `.fit(X, y)` to fit your data! | |
:type: PySRRegressor | |
""" | |
super().__init__() | |
# TODO: Order args in docstring by order of declaration. | |
self.model_selection = model_selection | |
if binary_operators is None: | |
binary_operators = "+ * - /".split(" ") | |
if unary_operators is None: | |
unary_operators = [] | |
if extra_sympy_mappings is None: | |
extra_sympy_mappings = {} | |
if variable_names is None: | |
variable_names = [] | |
if constraints is None: | |
constraints = {} | |
if multithreading is None: | |
# Default is multithreading=True, unless explicitly set, | |
# or procs is set to 0 (serial mode). | |
multithreading = procs != 0 | |
if update_verbosity is None: | |
update_verbosity = verbosity | |
buffer_available = "buffer" in sys.stdout.__dir__() | |
if progress is not None: | |
if progress and not buffer_available: | |
warnings.warn( | |
"Note: it looks like you are running in Jupyter. The progress bar will be turned off." | |
) | |
progress = False | |
else: | |
progress = buffer_available | |
assert optimizer_algorithm in ["NelderMead", "BFGS"] | |
assert tournament_selection_n < npop | |
if extra_jax_mappings is not None: | |
for value in extra_jax_mappings.values(): | |
if not isinstance(value, str): | |
raise NotImplementedError( | |
"extra_jax_mappings must have keys that are strings! e.g., {sympy.sqrt: 'jnp.sqrt'}." | |
) | |
else: | |
extra_jax_mappings = {} | |
if extra_torch_mappings is not None: | |
for value in extra_jax_mappings.values(): | |
if not callable(value): | |
raise NotImplementedError( | |
"extra_torch_mappings must be callable functions! e.g., {sympy.sqrt: torch.sqrt}." | |
) | |
else: | |
extra_torch_mappings = {} | |
if maxsize > 40: | |
warnings.warn( | |
"Note: Using a large maxsize for the equation search will be exponentially slower and use significant memory. You should consider turning `useFrequency` to False, and perhaps use `warmupMaxsizeBy`." | |
) | |
elif maxsize < 7: | |
raise NotImplementedError("PySR requires a maxsize of at least 7") | |
if maxdepth is None: | |
maxdepth = maxsize | |
if isinstance(binary_operators, str): | |
binary_operators = [binary_operators] | |
if isinstance(unary_operators, str): | |
unary_operators = [unary_operators] | |
self.params = { | |
**dict( | |
weights=weights, | |
binary_operators=binary_operators, | |
unary_operators=unary_operators, | |
procs=procs, | |
loss=loss, | |
populations=populations, | |
niterations=niterations, | |
ncyclesperiteration=ncyclesperiteration, | |
timeout_in_seconds=timeout_in_seconds, | |
alpha=alpha, | |
annealing=annealing, | |
fractionReplaced=fractionReplaced, | |
fractionReplacedHof=fractionReplacedHof, | |
npop=npop, | |
parsimony=float(parsimony), | |
migration=migration, | |
hofMigration=hofMigration, | |
shouldOptimizeConstants=shouldOptimizeConstants, | |
topn=topn, | |
weightAddNode=weightAddNode, | |
weightInsertNode=weightInsertNode, | |
weightDeleteNode=weightDeleteNode, | |
weightDoNothing=weightDoNothing, | |
weightMutateConstant=weightMutateConstant, | |
weightMutateOperator=weightMutateOperator, | |
weightRandomize=weightRandomize, | |
weightSimplify=weightSimplify, | |
crossoverProbability=crossoverProbability, | |
perturbationFactor=perturbationFactor, | |
verbosity=verbosity, | |
update_verbosity=update_verbosity, | |
progress=progress, | |
maxsize=maxsize, | |
fast_cycle=fast_cycle, | |
maxdepth=maxdepth, | |
batching=batching, | |
batchSize=batchSize, | |
select_k_features=select_k_features, | |
warmupMaxsizeBy=warmupMaxsizeBy, | |
constraints=constraints, | |
useFrequency=useFrequency, | |
useFrequencyInTournament=useFrequencyInTournament, | |
tempdir=tempdir, | |
delete_tempfiles=delete_tempfiles, | |
update=update, | |
temp_equation_file=temp_equation_file, | |
optimizer_algorithm=optimizer_algorithm, | |
optimizer_nrestarts=optimizer_nrestarts, | |
optimize_probability=optimize_probability, | |
optimizer_iterations=optimizer_iterations, | |
tournament_selection_n=tournament_selection_n, | |
tournament_selection_p=tournament_selection_p, | |
denoise=denoise, | |
Xresampled=Xresampled, | |
precision=precision, | |
multithreading=multithreading, | |
use_symbolic_utils=use_symbolic_utils, | |
skip_mutation_failures=skip_mutation_failures, | |
), | |
} | |
# Stored equations: | |
self.equations = None | |
self.params_hash = None | |
self.raw_julia_state = None | |
self.multioutput = None | |
self.equation_file = equation_file | |
self.n_features = None | |
self.extra_sympy_mappings = extra_sympy_mappings | |
self.extra_torch_mappings = extra_torch_mappings | |
self.extra_jax_mappings = extra_jax_mappings | |
self.output_jax_format = output_jax_format | |
self.output_torch_format = output_torch_format | |
self.nout = 1 | |
self.selection = None | |
self.variable_names = variable_names | |
self.julia_project = julia_project | |
self.surface_parameters = [ | |
"model_selection", | |
"multioutput", | |
"equation_file", | |
"n_features", | |
"extra_sympy_mappings", | |
"extra_torch_mappings", | |
"extra_jax_mappings", | |
"output_jax_format", | |
"output_torch_format", | |
"nout", | |
"selection", | |
"variable_names", | |
"julia_project", | |
] | |
def __repr__(self): | |
"""Prints all current equations fitted by the model. | |
The string `>>>>` denotes which equation is selected by the | |
`model_selection`. | |
""" | |
if self.equations is None: | |
return "PySRRegressor.equations = None" | |
output = "PySRRegressor.equations = [\n" | |
equations = self.equations | |
if not isinstance(equations, list): | |
all_equations = [equations] | |
else: | |
all_equations = equations | |
for i, equations in enumerate(all_equations): | |
selected = ["" for _ in range(len(equations))] | |
if self.model_selection == "accuracy": | |
chosen_row = -1 | |
elif self.model_selection == "best": | |
chosen_row = equations["score"].idxmax() | |
else: | |
raise NotImplementedError | |
selected[chosen_row] = ">>>>" | |
repr_equations = pd.DataFrame( | |
dict( | |
pick=selected, | |
score=equations["score"], | |
equation=equations["equation"], | |
loss=equations["loss"], | |
complexity=equations["complexity"], | |
) | |
) | |
if len(all_equations) > 1: | |
output += "[\n" | |
for line in repr_equations.__repr__().split("\n"): | |
output += "\t" + line + "\n" | |
if len(all_equations) > 1: | |
output += "]" | |
if i < len(all_equations) - 1: | |
output += ", " | |
output += "]" | |
return output | |
def set_params(self, **params): | |
"""Set parameters for equation search.""" | |
for key, value in params.items(): | |
if key in self.surface_parameters: | |
self.__setattr__(key, value) | |
elif key in self.params: | |
self.params[key] = value | |
else: | |
raise ValueError(f"Parameter {key} is not in the list of parameters.") | |
return self | |
def get_params(self, deep=True): | |
"""Get parameters for equation search.""" | |
del deep | |
return { | |
**self.params, | |
**{key: self.__getattribute__(key) for key in self.surface_parameters}, | |
} | |
def get_best(self, index=None): | |
"""Get best equation using `model_selection`. | |
:param index: Optional. If you wish to select a particular equation | |
from `self.equations`, give the row number here. This overrides | |
the `model_selection` parameter. | |
:type index: int | |
:returns: Dictionary representing the best expression found. | |
:type: pd.Series | |
""" | |
if self.equations is None: | |
raise ValueError("No equations have been generated yet.") | |
if index is not None: | |
if isinstance(self.equations, list): | |
assert isinstance(index, list) | |
return [eq.iloc[i] for eq, i in zip(self.equations, index)] | |
return self.equations.iloc[index] | |
if self.model_selection == "accuracy": | |
if isinstance(self.equations, list): | |
return [eq.iloc[-1] for eq in self.equations] | |
return self.equations.iloc[-1] | |
elif self.model_selection == "best": | |
if isinstance(self.equations, list): | |
return [eq.iloc[eq["score"].idxmax()] for eq in self.equations] | |
return self.equations.iloc[self.equations["score"].idxmax()] | |
else: | |
raise NotImplementedError( | |
f"{self.model_selection} is not a valid model selection strategy." | |
) | |
def fit(self, X, y, weights=None, variable_names=None): | |
"""Search for equations to fit the dataset and store them in `self.equations`. | |
:param X: 2D array. Rows are examples, columns are features. If pandas DataFrame, the columns are used for variable names (so make sure they don't contain spaces). | |
:type X: np.ndarray/pandas.DataFrame | |
:param y: 1D array (rows are examples) or 2D array (rows are examples, columns are outputs). Putting in a 2D array will trigger a search for equations for each feature of y. | |
:type y: np.ndarray | |
:param weights: Optional. Same shape as y. Each element is how to weight the mean-square-error loss for that particular element of y. | |
:type weights: np.ndarray | |
:param variable_names: a list of names for the variables, other than "x0", "x1", etc. | |
You can also pass a pandas DataFrame for X. | |
:type variable_names: list | |
""" | |
if variable_names is None: | |
variable_names = self.variable_names | |
self._run( | |
X=X, | |
y=y, | |
weights=weights, | |
variable_names=variable_names, | |
) | |
return self | |
def refresh(self): | |
# Updates self.equations with any new options passed, | |
# such as extra_sympy_mappings. | |
self.equations = self.get_hof() | |
def predict(self, X, index=None): | |
"""Predict y from input X using the equation chosen by `model_selection`. | |
You may see what equation is used by printing this object. X should have the same | |
columns as the training data. | |
:param X: 2D array. Rows are examples, columns are features. If pandas DataFrame, the columns are used for variable names (so make sure they don't contain spaces). | |
:type X: np.ndarray/pandas.DataFrame | |
:param index: Optional. If you want to compute the output of | |
an expression using a particular row of | |
`self.equations`, you may specify the index here. | |
:type index: int | |
:returns: 1D array (rows are examples) or 2D array (rows are examples, columns are outputs). | |
:type: np.ndarray | |
""" | |
self.refresh() | |
best = self.get_best(index=index) | |
if self.multioutput: | |
return np.stack([eq["lambda_format"](X) for eq in best], axis=1) | |
return best["lambda_format"](X) | |
def sympy(self, index=None): | |
"""Return sympy representation of the equation(s) chosen by `model_selection`. | |
:param index: Optional. If you wish to select a particular equation | |
from `self.equations`, give the index number here. This overrides | |
the `model_selection` parameter. | |
:type index: int | |
:returns: SymPy representation of the best expression. | |
""" | |
self.refresh() | |
best = self.get_best(index=index) | |
if self.multioutput: | |
return [eq["sympy_format"] for eq in best] | |
return best["sympy_format"] | |
def latex(self, index=None): | |
"""Return latex representation of the equation(s) chosen by `model_selection`. | |
:param index: Optional. If you wish to select a particular equation | |
from `self.equations`, give the index number here. This overrides | |
the `model_selection` parameter. | |
:type index: int | |
:returns: LaTeX expression as a string | |
:type: str | |
""" | |
self.refresh() | |
sympy_representation = self.sympy(index=index) | |
if self.multioutput: | |
return [sympy.latex(s) for s in sympy_representation] | |
return sympy.latex(sympy_representation) | |
def jax(self, index=None): | |
"""Return jax representation of the equation(s) chosen by `model_selection`. | |
Each equation (multiple given if there are multiple outputs) is a dictionary | |
containing {"callable": func, "parameters": params}. To call `func`, pass | |
func(X, params). This function is differentiable using `jax.grad`. | |
:param index: Optional. If you wish to select a particular equation | |
from `self.equations`, give the index number here. This overrides | |
the `model_selection` parameter. | |
:type index: int | |
:returns: Dictionary of callable jax function in "callable" key, | |
and jax array of parameters as "parameters" key. | |
:type: dict | |
""" | |
if self.using_pandas: | |
warnings.warn( | |
"PySR's JAX modules are not set up to work with a " | |
"model that was trained on pandas dataframes. " | |
"Train on an array instead to ensure everything works as planned." | |
) | |
self.set_params(output_jax_format=True) | |
self.refresh() | |
best = self.get_best(index=index) | |
if self.multioutput: | |
return [eq["jax_format"] for eq in best] | |
return best["jax_format"] | |
def pytorch(self, index=None): | |
"""Return pytorch representation of the equation(s) chosen by `model_selection`. | |
Each equation (multiple given if there are multiple outputs) is a PyTorch module | |
containing the parameters as trainable attributes. You can use the module like | |
any other PyTorch module: `module(X)`, where `X` is a tensor with the same | |
column ordering as trained with. | |
:param index: Optional. If you wish to select a particular equation | |
from `self.equations`, give the row number here. This overrides | |
the `model_selection` parameter. | |
:type index: int | |
:returns: PyTorch module representing the expression. | |
:type: torch.nn.Module | |
""" | |
if self.using_pandas: | |
warnings.warn( | |
"PySR's PyTorch modules are not set up to work with a " | |
"model that was trained on pandas dataframes. " | |
"Train on an array instead to ensure everything works as planned." | |
) | |
self.set_params(output_torch_format=True) | |
self.refresh() | |
best = self.get_best(index=index) | |
if self.multioutput: | |
return [eq["torch_format"] for eq in best] | |
return best["torch_format"] | |
def reset(self): | |
"""Reset the search state.""" | |
self.equations = None | |
self.params_hash = None | |
self.raw_julia_state = None | |
self.variable_names = None | |
self.selection = None | |
def _run(self, X, y, weights, variable_names): | |
global already_ran | |
global Main | |
for key in self.surface_parameters: | |
if key in self.params: | |
raise ValueError( | |
f"{key} is a surface parameter, and cannot be in self.params" | |
) | |
multithreading = self.params["multithreading"] | |
procs = self.params["procs"] | |
binary_operators = self.params["binary_operators"] | |
unary_operators = self.params["unary_operators"] | |
batching = self.params["batching"] | |
maxsize = self.params["maxsize"] | |
select_k_features = self.params["select_k_features"] | |
Xresampled = self.params["Xresampled"] | |
denoise = self.params["denoise"] | |
constraints = self.params["constraints"] | |
update = self.params["update"] | |
loss = self.params["loss"] | |
weightMutateConstant = self.params["weightMutateConstant"] | |
weightMutateOperator = self.params["weightMutateOperator"] | |
weightAddNode = self.params["weightAddNode"] | |
weightInsertNode = self.params["weightInsertNode"] | |
weightDeleteNode = self.params["weightDeleteNode"] | |
weightSimplify = self.params["weightSimplify"] | |
weightRandomize = self.params["weightRandomize"] | |
weightDoNothing = self.params["weightDoNothing"] | |
if Main is None: | |
if multithreading: | |
os.environ["JULIA_NUM_THREADS"] = str(procs) | |
Main = init_julia() | |
if isinstance(X, pd.DataFrame): | |
if variable_names is not None: | |
warnings.warn("Resetting variable_names from X.columns") | |
variable_names = list(X.columns) | |
X = np.array(X) | |
self.using_pandas = True | |
else: | |
self.using_pandas = False | |
if len(X.shape) == 1: | |
X = X[:, None] | |
if isinstance(y, pd.DataFrame) or isinstance(y, pd.Series): | |
y = np.array(y) | |
if variable_names is None or len(variable_names) == 0: | |
variable_names = [f"x{i}" for i in range(X.shape[1])] | |
use_custom_variable_names = len(variable_names) != 0 | |
# TODO: this is always true. | |
_check_assertions( | |
X, | |
binary_operators, | |
unary_operators, | |
use_custom_variable_names, | |
variable_names, | |
weights, | |
y, | |
) | |
self.n_features = X.shape[1] | |
if len(X) > 10000 and not batching: | |
warnings.warn( | |
"Note: you are running with more than 10,000 datapoints. You should consider turning on batching (https://astroautomata.com/PySR/#/options?id=batching). You should also reconsider if you need that many datapoints. Unless you have a large amount of noise (in which case you should smooth your dataset first), generally < 10,000 datapoints is enough to find a functional form with symbolic regression. More datapoints will lower the search speed." | |
) | |
X, selection = _handle_feature_selection( | |
X, select_k_features, y, variable_names | |
) | |
if len(y.shape) == 1 or (len(y.shape) == 2 and y.shape[1] == 1): | |
self.multioutput = False | |
self.nout = 1 | |
y = y.reshape(-1) | |
elif len(y.shape) == 2: | |
self.multioutput = True | |
self.nout = y.shape[1] | |
else: | |
raise NotImplementedError("y shape not supported!") | |
if denoise: | |
if weights is not None: | |
raise NotImplementedError( | |
"No weights for denoising - the weights are learned." | |
) | |
if Xresampled is not None: | |
# Select among only the selected features: | |
if isinstance(Xresampled, pd.DataFrame): | |
# Handle Xresampled is pandas dataframe | |
if selection is not None: | |
Xresampled = Xresampled[[variable_names[i] for i in selection]] | |
else: | |
Xresampled = Xresampled[variable_names] | |
Xresampled = np.array(Xresampled) | |
else: | |
if selection is not None: | |
Xresampled = Xresampled[:, selection] | |
if self.multioutput: | |
y = np.stack( | |
[ | |
_denoise(X, y[:, i], Xresampled=Xresampled)[1] | |
for i in range(self.nout) | |
], | |
axis=1, | |
) | |
if Xresampled is not None: | |
X = Xresampled | |
else: | |
X, y = _denoise(X, y, Xresampled=Xresampled) | |
self.julia_project, is_shared = _get_julia_project(self.julia_project) | |
tmpdir = Path(tempfile.mkdtemp(dir=self.params["tempdir"])) | |
if self.params["temp_equation_file"]: | |
self.equation_file = tmpdir / "hall_of_fame.csv" | |
elif self.equation_file is None: | |
date_time = datetime.now().strftime("%Y-%m-%d_%H%M%S.%f")[:-3] | |
self.equation_file = "hall_of_fame_" + date_time + ".csv" | |
_create_inline_operators( | |
binary_operators=binary_operators, unary_operators=unary_operators | |
) | |
_handle_constraints( | |
binary_operators=binary_operators, | |
unary_operators=unary_operators, | |
constraints=constraints, | |
) | |
una_constraints = [constraints[op] for op in unary_operators] | |
bin_constraints = [constraints[op] for op in binary_operators] | |
if not already_ran: | |
Main.eval("using Pkg") | |
io = "devnull" if self.params["update_verbosity"] == 0 else "stderr" | |
io_arg = f"io={io}" if is_julia_version_greater_eq(Main, "1.6") else "" | |
Main.eval( | |
f'Pkg.activate("{_escape_filename(self.julia_project)}", shared = Bool({int(is_shared)}), {io_arg})' | |
) | |
from julia.api import JuliaError | |
if is_shared: | |
# Install SymbolicRegression.jl: | |
_add_sr_to_julia_project(Main, io_arg) | |
try: | |
if update: | |
Main.eval(f"Pkg.resolve({io_arg})") | |
Main.eval(f"Pkg.instantiate({io_arg})") | |
else: | |
Main.eval(f"Pkg.instantiate({io_arg})") | |
except (JuliaError, RuntimeError) as e: | |
raise ImportError(import_error_string(self.julia_project)) from e | |
Main.eval("using SymbolicRegression") | |
Main.plus = Main.eval("(+)") | |
Main.sub = Main.eval("(-)") | |
Main.mult = Main.eval("(*)") | |
Main.pow = Main.eval("(^)") | |
Main.div = Main.eval("(/)") | |
Main.custom_loss = Main.eval(loss) | |
mutationWeights = [ | |
float(weightMutateConstant), | |
float(weightMutateOperator), | |
float(weightAddNode), | |
float(weightInsertNode), | |
float(weightDeleteNode), | |
float(weightSimplify), | |
float(weightRandomize), | |
float(weightDoNothing), | |
] | |
params_to_hash = { | |
**{k: self.__getattribute__(k) for k in self.surface_parameters}, | |
**self.params, | |
} | |
params_excluded_from_hash = [ | |
"niterations", | |
] | |
# Delete these^ from params_to_hash: | |
params_to_hash = { | |
k: v | |
for k, v in params_to_hash.items() | |
if k not in params_excluded_from_hash | |
} | |
# Sort params_to_hash by key: | |
params_to_hash = OrderedDict(sorted(params_to_hash.items())) | |
# Hash all parameters: | |
cur_hash = sha256(str(params_to_hash).encode()).hexdigest() | |
if self.params_hash is not None: | |
if cur_hash != self.params_hash: | |
warnings.warn( | |
"Warning: PySR options have changed since the last run. " | |
"This is experimental and may not work. " | |
"For example, if the operators change, or even their order," | |
" the saved equations will be in the wrong format." | |
"\n\n" | |
"To reset the search state, run `.reset()`. " | |
) | |
self.params_hash = cur_hash | |
options = Main.Options( | |
binary_operators=Main.eval(str(tuple(binary_operators)).replace("'", "")), | |
unary_operators=Main.eval(str(tuple(unary_operators)).replace("'", "")), | |
bin_constraints=bin_constraints, | |
una_constraints=una_constraints, | |
loss=Main.custom_loss, | |
maxsize=int(maxsize), | |
hofFile=_escape_filename(self.equation_file), | |
npopulations=int(self.params["populations"]), | |
batching=batching, | |
batchSize=int( | |
min([self.params["batchSize"], len(X)]) if batching else len(X) | |
), | |
mutationWeights=mutationWeights, | |
probPickFirst=self.params["tournament_selection_p"], | |
ns=self.params["tournament_selection_n"], | |
# These have the same name: | |
parsimony=self.params["parsimony"], | |
alpha=self.params["alpha"], | |
maxdepth=self.params["maxdepth"], | |
fast_cycle=self.params["fast_cycle"], | |
migration=self.params["migration"], | |
hofMigration=self.params["hofMigration"], | |
fractionReplacedHof=self.params["fractionReplacedHof"], | |
shouldOptimizeConstants=self.params["shouldOptimizeConstants"], | |
warmupMaxsizeBy=self.params["warmupMaxsizeBy"], | |
useFrequency=self.params["useFrequency"], | |
useFrequencyInTournament=self.params["useFrequencyInTournament"], | |
npop=self.params["npop"], | |
ncyclesperiteration=self.params["ncyclesperiteration"], | |
fractionReplaced=self.params["fractionReplaced"], | |
topn=self.params["topn"], | |
verbosity=self.params["verbosity"], | |
optimizer_algorithm=self.params["optimizer_algorithm"], | |
optimizer_nrestarts=self.params["optimizer_nrestarts"], | |
optimize_probability=self.params["optimize_probability"], | |
optimizer_iterations=self.params["optimizer_iterations"], | |
perturbationFactor=self.params["perturbationFactor"], | |
annealing=self.params["annealing"], | |
stateReturn=True, # Required for state saving. | |
use_symbolic_utils=self.params["use_symbolic_utils"], | |
progress=self.params["progress"], | |
timeout_in_seconds=self.params["timeout_in_seconds"], | |
crossoverProbability=self.params["crossoverProbability"], | |
skip_mutation_failures=self.params["skip_mutation_failures"], | |
) | |
np_dtype = {16: np.float16, 32: np.float32, 64: np.float64}[ | |
self.params["precision"] | |
] | |
Main.X = np.array(X, dtype=np_dtype).T | |
if len(y.shape) == 1: | |
Main.y = np.array(y, dtype=np_dtype) | |
else: | |
Main.y = np.array(y, dtype=np_dtype).T | |
if weights is not None: | |
if len(weights.shape) == 1: | |
Main.weights = np.array(weights, dtype=np_dtype) | |
else: | |
Main.weights = np.array(weights, dtype=np_dtype).T | |
else: | |
Main.weights = None | |
cprocs = 0 if multithreading else procs | |
self.raw_julia_state = Main.EquationSearch( | |
Main.X, | |
Main.y, | |
weights=Main.weights, | |
niterations=int(self.params["niterations"]), | |
varMap=( | |
variable_names | |
if selection is None | |
else [variable_names[i] for i in selection] | |
), | |
options=options, | |
numprocs=int(cprocs), | |
multithreading=bool(multithreading), | |
saved_state=self.raw_julia_state, | |
) | |
self.variable_names = variable_names | |
self.selection = selection | |
# Not in params: | |
# selection, variable_names, multioutput | |
self.equations = self.get_hof() | |
if self.params["delete_tempfiles"]: | |
shutil.rmtree(tmpdir) | |
already_ran = True | |
def get_hof(self): | |
"""Get the equations from a hall of fame file. If no arguments | |
entered, the ones used previously from a call to PySR will be used.""" | |
try: | |
if self.multioutput: | |
all_outputs = [] | |
for i in range(1, self.nout + 1): | |
df = pd.read_csv( | |
str(self.equation_file) + f".out{i}" + ".bkup", | |
sep="|", | |
) | |
# Rename Complexity column to complexity: | |
df.rename( | |
columns={ | |
"Complexity": "complexity", | |
"MSE": "loss", | |
"Equation": "equation", | |
}, | |
inplace=True, | |
) | |
all_outputs.append(df) | |
else: | |
all_outputs = [pd.read_csv(str(self.equation_file) + ".bkup", sep="|")] | |
all_outputs[-1].rename( | |
columns={ | |
"Complexity": "complexity", | |
"MSE": "loss", | |
"Equation": "equation", | |
}, | |
inplace=True, | |
) | |
except FileNotFoundError: | |
raise RuntimeError( | |
"Couldn't find equation file! The equation search likely exited before a single iteration completed." | |
) | |
ret_outputs = [] | |
for output in all_outputs: | |
scores = [] | |
lastMSE = None | |
lastComplexity = 0 | |
sympy_format = [] | |
lambda_format = [] | |
if self.output_jax_format: | |
jax_format = [] | |
if self.output_torch_format: | |
torch_format = [] | |
use_custom_variable_names = len(self.variable_names) != 0 | |
local_sympy_mappings = { | |
**self.extra_sympy_mappings, | |
**sympy_mappings, | |
} | |
if use_custom_variable_names: | |
sympy_symbols = [ | |
sympy.Symbol(self.variable_names[i]) for i in range(self.n_features) | |
] | |
else: | |
sympy_symbols = [ | |
sympy.Symbol("x%d" % i) for i in range(self.n_features) | |
] | |
for _, eqn_row in output.iterrows(): | |
eqn = sympify(eqn_row["equation"], locals=local_sympy_mappings) | |
sympy_format.append(eqn) | |
# Numpy: | |
lambda_format.append( | |
CallableEquation( | |
sympy_symbols, eqn, self.selection, self.variable_names | |
) | |
) | |
# JAX: | |
if self.output_jax_format: | |
from .export_jax import sympy2jax | |
func, params = sympy2jax( | |
eqn, | |
sympy_symbols, | |
selection=self.selection, | |
extra_jax_mappings=self.extra_jax_mappings, | |
) | |
jax_format.append({"callable": func, "parameters": params}) | |
# Torch: | |
if self.output_torch_format: | |
from .export_torch import sympy2torch | |
module = sympy2torch( | |
eqn, | |
sympy_symbols, | |
selection=self.selection, | |
extra_torch_mappings=self.extra_torch_mappings, | |
) | |
torch_format.append(module) | |
curMSE = eqn_row["loss"] | |
curComplexity = eqn_row["complexity"] | |
if lastMSE is None: | |
cur_score = 0.0 | |
else: | |
if curMSE > 0.0: | |
cur_score = -np.log(curMSE / lastMSE) / ( | |
curComplexity - lastComplexity | |
) | |
else: | |
cur_score = np.inf | |
scores.append(cur_score) | |
lastMSE = curMSE | |
lastComplexity = curComplexity | |
output["score"] = np.array(scores) | |
output["sympy_format"] = sympy_format | |
output["lambda_format"] = lambda_format | |
output_cols = [ | |
"complexity", | |
"loss", | |
"score", | |
"equation", | |
"sympy_format", | |
"lambda_format", | |
] | |
if self.output_jax_format: | |
output_cols += ["jax_format"] | |
output["jax_format"] = jax_format | |
if self.output_torch_format: | |
output_cols += ["torch_format"] | |
output["torch_format"] = torch_format | |
ret_outputs.append(output[output_cols]) | |
if self.multioutput: | |
return ret_outputs | |
return ret_outputs[0] | |
def score(self, X, y): | |
del X | |
del y | |
raise NotImplementedError | |