Spaces:
Running
Running
import Optim | |
import Printf: @printf | |
import Random: shuffle!, randperm | |
include("constants.jl") | |
include("errors.jl") | |
if weighted | |
const avgy = sum(y .* weights)/sum(weights) | |
const baselineMSE = MSE(y, convert(Array{Float32, 1}, ones(len) .* avgy), weights) | |
else | |
const avgy = sum(y)/len | |
const baselineMSE = MSE(y, convert(Array{Float32, 1}, ones(len) .* avgy)) | |
end | |
include("utils.jl") | |
include("Node.jl") | |
include("eval.jl") | |
include("randomMutations.jl") | |
include("simplification.jl") | |
include("PopMember.jl") | |
include("halloffame.jl") | |
include("complexityChecks.jl") | |
include("simulatedAnnealing.jl") | |
include("Population.jl") | |
include("regEvolCycle.jl") | |
include("run.jl") | |
include("optimization.jl") | |
function fullRun(niterations::Integer; | |
npop::Integer=300, | |
ncyclesperiteration::Integer=3000, | |
fractionReplaced::Float32=0.1f0, | |
verbosity::Integer=0, | |
topn::Integer=10 | |
) | |
testConfiguration() | |
# 1. Start a population on every process | |
allPops = Future[] | |
# Set up a channel to send finished populations back to head node | |
channels = [RemoteChannel(1) for j=1:npopulations] | |
bestSubPops = [Population(1) for j=1:npopulations] | |
hallOfFame = HallOfFame() | |
frequencyComplexity = ones(Float32, actualMaxsize) | |
curmaxsize = 3 | |
if warmupMaxsize == 0 | |
curmaxsize = maxsize | |
end | |
for i=1:npopulations | |
future = @spawnat :any Population(npop, 3) | |
push!(allPops, future) | |
end | |
# # 2. Start the cycle on every process: | |
@sync for i=1:npopulations | |
@async allPops[i] = @spawnat :any run(fetch(allPops[i]), ncyclesperiteration, curmaxsize, copy(frequencyComplexity)/sum(frequencyComplexity), verbosity=verbosity) | |
end | |
println("Started!") | |
cycles_complete = npopulations * niterations | |
if warmupMaxsize != 0 | |
curmaxsize += 1 | |
if curmaxsize > maxsize | |
curmaxsize = maxsize | |
end | |
end | |
last_print_time = time() | |
num_equations = 0.0 | |
print_every_n_seconds = 5 | |
equation_speed = Float32[] | |
for i=1:npopulations | |
# Start listening for each population to finish: | |
@async put!(channels[i], fetch(allPops[i])) | |
end | |
while cycles_complete > 0 | |
@inbounds for i=1:npopulations | |
# Non-blocking check if a population is ready: | |
if isready(channels[i]) | |
# Take the fetch operation from the channel since its ready | |
cur_pop = take!(channels[i]) | |
bestSubPops[i] = bestSubPop(cur_pop, topn=topn) | |
#Try normal copy... | |
bestPops = Population([member for pop in bestSubPops for member in pop.members]) | |
for member in cur_pop.members | |
size = countNodes(member.tree) | |
frequencyComplexity[size] += 1 | |
if member.score < hallOfFame.members[size].score | |
hallOfFame.members[size] = deepcopy(member) | |
hallOfFame.exists[size] = true | |
end | |
end | |
# Dominating pareto curve - must be better than all simpler equations | |
dominating = PopMember[] | |
open(hofFile, "w") do io | |
println(io,"Complexity|MSE|Equation") | |
for size=1:actualMaxsize | |
if hallOfFame.exists[size] | |
member = hallOfFame.members[size] | |
if weighted | |
curMSE = MSE(evalTreeArray(member.tree), y, weights) | |
else | |
curMSE = MSE(evalTreeArray(member.tree), y) | |
end | |
numberSmallerAndBetter = 0 | |
for i=1:(size-1) | |
if weighted | |
hofMSE = MSE(evalTreeArray(hallOfFame.members[i].tree), y, weights) | |
else | |
hofMSE = MSE(evalTreeArray(hallOfFame.members[i].tree), y) | |
end | |
if (hallOfFame.exists[size] && curMSE > hofMSE) | |
numberSmallerAndBetter += 1 | |
end | |
end | |
betterThanAllSmaller = (numberSmallerAndBetter == 0) | |
if betterThanAllSmaller | |
println(io, "$size|$(curMSE)|$(stringTree(member.tree))") | |
push!(dominating, member) | |
end | |
end | |
end | |
end | |
cp(hofFile, hofFile*".bkup", force=true) | |
# Try normal copy otherwise. | |
if migration | |
for k in rand(1:npop, round(Integer, npop*fractionReplaced)) | |
to_copy = rand(1:size(bestPops.members)[1]) | |
cur_pop.members[k] = PopMember( | |
copyNode(bestPops.members[to_copy].tree), | |
bestPops.members[to_copy].score) | |
end | |
end | |
if hofMigration && size(dominating)[1] > 0 | |
for k in rand(1:npop, round(Integer, npop*fractionReplacedHof)) | |
# Copy in case one gets used twice | |
to_copy = rand(1:size(dominating)[1]) | |
cur_pop.members[k] = PopMember( | |
copyNode(dominating[to_copy].tree) | |
) | |
end | |
end | |
@async begin | |
allPops[i] = @spawnat :any let | |
tmp_pop = run(cur_pop, ncyclesperiteration, curmaxsize, copy(frequencyComplexity)/sum(frequencyComplexity), verbosity=verbosity) | |
@inbounds @simd for j=1:tmp_pop.n | |
if rand() < 0.1 | |
tmp_pop.members[j].tree = simplifyTree(tmp_pop.members[j].tree) | |
tmp_pop.members[j].tree = combineOperators(tmp_pop.members[j].tree) | |
if shouldOptimizeConstants | |
tmp_pop.members[j] = optimizeConstants(tmp_pop.members[j]) | |
end | |
end | |
end | |
tmp_pop = finalizeScores(tmp_pop) | |
tmp_pop | |
end | |
put!(channels[i], fetch(allPops[i])) | |
end | |
cycles_complete -= 1 | |
cycles_elapsed = npopulations * niterations - cycles_complete | |
if warmupMaxsize != 0 && cycles_elapsed % warmupMaxsize == 0 | |
curmaxsize += 1 | |
if curmaxsize > maxsize | |
curmaxsize = maxsize | |
end | |
end | |
num_equations += ncyclesperiteration * npop / 10.0 | |
end | |
end | |
sleep(1e-3) | |
elapsed = time() - last_print_time | |
#Update if time has passed, and some new equations generated. | |
if elapsed > print_every_n_seconds && num_equations > 0.0 | |
# Dominating pareto curve - must be better than all simpler equations | |
current_speed = num_equations/elapsed | |
average_over_m_measurements = 10 #for print_every...=5, this gives 50 second running average | |
push!(equation_speed, current_speed) | |
if length(equation_speed) > average_over_m_measurements | |
deleteat!(equation_speed, 1) | |
end | |
average_speed = sum(equation_speed)/length(equation_speed) | |
curMSE = baselineMSE | |
lastMSE = curMSE | |
lastComplexity = 0 | |
if verbosity > 0 | |
@printf("\n") | |
@printf("Cycles per second: %.3e\n", round(average_speed, sigdigits=3)) | |
cycles_elapsed = npopulations * niterations - cycles_complete | |
@printf("Progress: %d / %d total iterations (%.3f%%)\n", cycles_elapsed, npopulations * niterations, 100.0*cycles_elapsed/(npopulations*niterations)) | |
@printf("Hall of Fame:\n") | |
@printf("-----------------------------------------\n") | |
@printf("%-10s %-8s %-8s %-8s\n", "Complexity", "MSE", "Score", "Equation") | |
@printf("%-10d %-8.3e %-8.3e %-.f\n", 0, curMSE, 0f0, avgy) | |
end | |
for size=1:actualMaxsize | |
if hallOfFame.exists[size] | |
member = hallOfFame.members[size] | |
if weighted | |
curMSE = MSE(evalTreeArray(member.tree), y, weights) | |
else | |
curMSE = MSE(evalTreeArray(member.tree), y) | |
end | |
numberSmallerAndBetter = 0 | |
for i=1:(size-1) | |
if weighted | |
hofMSE = MSE(evalTreeArray(hallOfFame.members[i].tree), y, weights) | |
else | |
hofMSE = MSE(evalTreeArray(hallOfFame.members[i].tree), y) | |
end | |
if (hallOfFame.exists[size] && curMSE > hofMSE) | |
numberSmallerAndBetter += 1 | |
end | |
end | |
betterThanAllSmaller = (numberSmallerAndBetter == 0) | |
if betterThanAllSmaller | |
delta_c = size - lastComplexity | |
delta_l_mse = log(curMSE/lastMSE) | |
score = convert(Float32, -delta_l_mse/delta_c) | |
if verbosity > 0 | |
@printf("%-10d %-8.3e %-8.3e %-s\n" , size, curMSE, score, stringTree(member.tree)) | |
end | |
lastMSE = curMSE | |
lastComplexity = size | |
end | |
end | |
end | |
debug(verbosity, "") | |
last_print_time = time() | |
num_equations = 0.0 | |
end | |
end | |
end | |