Spaces:
Running
Running
import numpy as np | |
import pandas as pd | |
import tempfile, os, pdb, csv, traceback,random, time | |
class Problem: | |
""" | |
Problem API to work with PySR. | |
Should be able to call pysr(problem.X, problem.y, var_names=problem.var_names) and have it work | |
""" | |
def __init__(self, X, y, var_names=None): | |
self.X = X | |
self.y = y | |
self.var_names = var_names | |
class FeynmanProblem(Problem): | |
""" | |
Stores the data for the problems from the 100 Feynman Equations on Physics. | |
This is the benchmark used in the AI Feynman Paper | |
""" | |
def __init__(self, row, gen=False, dp=500): | |
""" | |
row: a row read as a dict from the FeynmanEquations dataset provided in the datasets folder of the repo | |
gen: If true the problem will have dp X and y values randomly generated else they will be None | |
""" | |
self.eq_id = row['Filename'] | |
self.form = row['Formula'] | |
self.n_vars = int(row['# variables']) | |
super(FeynmanProblem, self).__init__(None, None, var_names=[row[f'v{i + 1}_name'] for i in range(self.n_vars)]) | |
#self.var_names = [row[f'v{i+1}_name'] for i in range(self.n_vars)] | |
self.low = [float(row[f'v{i+1}_low']) for i in range(self.n_vars)] | |
self.high = [float(row[f'v{i+1}_high']) for i in range(self.n_vars)] | |
self.dp = dp#int(row[f'datapoints']) | |
#self.X = None | |
#self.Y = None | |
if gen: | |
self.X = np.random.uniform(0.01, 25, size=(self.dp, self.n_vars)) | |
d = {} | |
for var in range(len(self.var_names)): | |
d[self.var_names[var]] = self.X[:, var] | |
d['exp'] = np.exp | |
d['sqrt'] = np.sqrt | |
d['pi'] = np.pi | |
d['cos'] = np.cos | |
d['sin'] = np.sin | |
d['tan'] = np.tan | |
d['tanh'] = np.tanh | |
d['ln'] = np.log | |
d['log'] = np.log # Quite sure the Feynman dataset has no base 10 logs | |
d['arcsin'] = np.arcsin | |
self.Y = eval(self.form,d) | |
return | |
def __str__(self): | |
return f"Feynman Equation: {self.eq_id}|Form: {self.form}" | |
def __repr__(self): | |
return str(self) | |
def mk_problems(first=100, gen=False, dp=500, data_dir="datasets/FeynmanEquations.csv"): | |
""" | |
first: the first "first" equations from the dataset will be made into problems | |
data_dir: the path pointing to the Feynman Equations csv | |
returns: list of FeynmanProblems | |
""" | |
ret = [] | |
with open(data_dir) as csvfile: | |
ind = 0 | |
reader = csv.DictReader(csvfile) | |
for i, row in enumerate(reader): | |
if ind > first: | |
break | |
if row['Filename'] == '': continue | |
try: | |
p = FeynmanProblem(row, gen=gen, dp=dp) | |
ret.append(p) | |
except Exception as e: | |
#traceback.print_exc() | |
#print(row) | |
print(f"FAILED ON ROW {i}") | |
ind += 1 | |
return ret | |
if __name__ == "__main__": | |
ret = FeynmanProblem.mk_problems(first=100, gen=True) | |
print(ret) |