PySR / test /test_jax.py
MilesCranmer's picture
Add PySRRegressor versions of jax/torch tests
d398bf9
raw
history blame
1.62 kB
import unittest
import numpy as np
from pysr import sympy2jax, get_hof, PySRRegressor
import pandas as pd
from jax import numpy as jnp
from jax import random
from jax import grad
import sympy
class TestJAX(unittest.TestCase):
def setUp(self):
np.random.seed(0)
def test_sympy2jax(self):
x, y, z = sympy.symbols("x y z")
cosx = 1.0 * sympy.cos(x) + y
key = random.PRNGKey(0)
X = random.normal(key, (1000, 2))
true = 1.0 * jnp.cos(X[:, 0]) + X[:, 1]
f, params = sympy2jax(cosx, [x, y, z])
self.assertTrue(jnp.all(jnp.isclose(f(X, params), true)).item())
def test_pipeline(self):
X = np.random.randn(100, 10)
equations = pd.DataFrame(
{
"Equation": ["1.0", "cos(x0)", "square(cos(x0))"],
"MSE": [1.0, 0.1, 1e-5],
"Complexity": [1, 2, 3],
}
)
equations["Complexity MSE Equation".split(" ")].to_csv(
"equation_file.csv.bkup", sep="|"
)
equations = get_hof(
"equation_file.csv",
n_features=2,
variables_names="x1 x2 x3".split(" "),
extra_sympy_mappings={},
output_jax_format=True,
multioutput=False,
nout=1,
selection=[1, 2, 3],
)
model = PySRRegressor()
jformat = model.jax()
np.testing.assert_almost_equal(
np.array(jformat["callable"](jnp.array(X), jformat["parameters"])),
np.square(np.cos(X[:, 1])), # Select feature 1
decimal=4,
)