PySR / paralleleureqa.jl
MilesCranmer's picture
Add benchmark file
c3d240e
raw
history blame
1.68 kB
include("eureqa.jl")
const nthreads = Threads.nthreads()
function fullRun(niterations::Integer;
npop::Integer=300,
annealing::Bool=true,
ncyclesperiteration::Integer=3000,
fractionReplaced::Float32=0.1f0,
verbosity::Integer=0,
)
debug(verbosity, "Lets try to learn (x2^2 + cos(x3)) using regularized evolution from scratch")
debug(verbosity, "Running with $nthreads threads")
# Generate random initial populations
allPops = [Population(npop, 3) for j=1:nthreads]
# Repeat this many evolutions; we collect and migrate the best
# each time.
for k=1:niterations
# Spawn threads to run indepdent evolutions, then gather them
@inbounds Threads.@threads for i=1:nthreads
allPops[i] = run(allPops[i], ncyclesperiteration, annealing, verbosity=verbosity)
end
# Get best 10 models from each evolution. Copy because we re-assign later.
bestPops = deepcopy(Population([member for pop in allPops for member in bestSubPop(pop).members]))
bestCurScoreIdx = argmin([bestPops.members[member].score for member=1:bestPops.n])
bestCurScore = bestPops.members[bestCurScoreIdx].score
debug(verbosity, bestCurScore, " is the score for ", stringTree(bestPops.members[bestCurScoreIdx].tree))
# Migration
for j=1:nthreads
for k in rand(1:npop, Integer(npop*fractionReplaced))
# Copy in case one gets used twice
allPops[j].members[k] = deepcopy(bestPops.members[rand(1:size(bestPops.members)[1])])
end
end
end
end