PySR / gui /app.py
MilesCranmer's picture
Only run PySR in another process
bb76c1f unverified
raw
history blame
7.1 kB
import gradio as gr
import numpy as np
import pandas as pd
import multiprocessing as mp
import tempfile
from typing import Optional
empty_df = pd.DataFrame(
{
"equation": [],
"loss": [],
"complexity": [],
}
)
test_equations = [
"sin(x) + cos(2*x) + tan(x/3)",
]
def generate_data(s: str, num_points: int, noise_level: float):
x = np.linspace(0, 10, num_points)
for (k, v) in {
"sin": "np.sin",
"cos": "np.cos",
"exp": "np.exp",
"log": "np.log",
"tan": "np.tan",
"^": "**",
}.items():
s = s.replace(k, v)
y = eval(s)
noise = np.random.normal(0, noise_level, y.shape)
y_noisy = y + noise
return pd.DataFrame({"x": x}), y_noisy
def _greet_dispatch(
file_input,
force_run,
test_equation,
num_points,
noise_level,
niterations,
maxsize,
binary_operators,
unary_operators,
seed,
):
"""Load data, then spawn a process to run the greet function."""
if file_input is not None:
# Look at some statistics of the file:
df = pd.read_csv(file_input)
if len(df) == 0:
return (
empty_df,
"The file is empty!",
)
if len(df.columns) == 1:
return (
empty_df,
"The file has only one column!",
)
if len(df) > 10_000 and not force_run:
return (
empty_df,
"You have uploaded a file with more than 10,000 rows. "
"This will take very long to run. "
"Please upload a subsample of the data, "
"or check the box 'Ignore Warnings'.",
)
col_to_fit = df.columns[-1]
y = np.array(df[col_to_fit])
X = df.drop([col_to_fit], axis=1)
else:
# X, y = generate_data(block["test_equation"], block["num_points"], block["noise_level"])
X, y = generate_data(test_equation, num_points, noise_level)
queue = mp.Queue()
process = mp.Process(
target=greet,
kwargs=dict(
X=X,
y=y,
queue=queue,
niterations=niterations,
maxsize=maxsize,
binary_operators=binary_operators,
unary_operators=unary_operators,
seed=seed,
),
)
process.start()
output = queue.get()
process.join()
return output
def greet(
*,
queue: mp.Queue,
X,
y,
niterations: int,
maxsize: int,
binary_operators: list,
unary_operators: list,
seed: int,
):
import pysr
model = pysr.PySRRegressor(
progress=False,
maxsize=maxsize,
niterations=niterations,
binary_operators=binary_operators,
unary_operators=unary_operators,
timeout_in_seconds=1000,
multithreading=False,
procs=0,
deterministic=True,
random_state=seed,
)
model.fit(X, y)
df = model.equations_[["complexity", "loss", "equation"]]
# Convert all columns to string type:
queue.put(df)
return 0
def _data_layout():
with gr.Tab("Example Data"):
# Plot of the example data:
example_plot = gr.ScatterPlot(
x="x",
y="y",
tooltip=["x", "y"],
x_lim=[0, 10],
y_lim=[-5, 5],
width=350,
height=300,
)
test_equation = gr.Radio(
test_equations, value=test_equations[0], label="Test Equation"
)
num_points = gr.Slider(
minimum=10,
maximum=1000,
value=100,
label="Number of Data Points",
step=1,
)
noise_level = gr.Slider(minimum=0, maximum=1, value=0.1, label="Noise Level")
with gr.Tab("Upload Data"):
file_input = gr.File(label="Upload a CSV File")
gr.Markdown(
"Upload a CSV file with the data to fit. The last column will be used as the target variable."
)
return dict(
file_input=file_input,
test_equation=test_equation,
num_points=num_points,
noise_level=noise_level,
example_plot=example_plot,
)
def _settings_layout():
binary_operators = gr.CheckboxGroup(
choices=["+", "-", "*", "/", "^"],
label="Binary Operators",
value=["+", "-", "*", "/"],
)
unary_operators = gr.CheckboxGroup(
choices=[
"sin",
"cos",
"exp",
"log",
"square",
"cube",
"sqrt",
"abs",
"tan",
],
label="Unary Operators",
value=[],
)
niterations = gr.Slider(
minimum=1,
maximum=1000,
value=40,
label="Number of Iterations",
step=1,
)
maxsize = gr.Slider(
minimum=7,
maximum=35,
value=20,
label="Maximum Complexity",
step=1,
)
seed = gr.Number(
value=0,
label="Random Seed",
)
force_run = gr.Checkbox(
value=False,
label="Ignore Warnings",
)
return dict(
binary_operators=binary_operators,
unary_operators=unary_operators,
niterations=niterations,
maxsize=maxsize,
force_run=force_run,
seed=seed,
)
def main():
blocks = {}
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
with gr.Row():
blocks = {**blocks, **_data_layout()}
with gr.Row():
blocks = {**blocks, **_settings_layout()}
with gr.Column():
blocks["df"] = gr.Dataframe(
headers=["complexity", "loss", "equation"],
datatype=["number", "number", "str"],
)
blocks["run"] = gr.Button()
blocks["run"].click(
_greet_dispatch,
inputs=[
blocks[k]
for k in [
"file_input",
"force_run",
"test_equation",
"num_points",
"noise_level",
"niterations",
"maxsize",
"binary_operators",
"unary_operators",
"seed",
]
],
outputs=[blocks["df"]],
)
# Any update to the equation choice will trigger a replot:
eqn_components = [
blocks["test_equation"],
blocks["num_points"],
blocks["noise_level"],
]
for eqn_component in eqn_components:
eqn_component.change(replot, eqn_components, blocks["example_plot"])
demo.launch(debug=True)
def replot(test_equation, num_points, noise_level):
X, y = generate_data(test_equation, num_points, noise_level)
df = pd.DataFrame({"x": X["x"], "y": y})
return df
if __name__ == "__main__":
main()