Spaces:
Running
Running
from pysr import pysr, best_row | |
from sklearn.base import BaseEstimator | |
class PySRRegressor(BaseEstimator): | |
def __init__(self, model_selection="accuracy", **params): | |
"""Initialize settings for pysr.pysr call. | |
:param model_selection: How to select a model. Can be 'accuracy' or 'best'. 'best' will optimize a combination of complexity and accuracy. | |
:type model_selection: str | |
""" | |
super().__init__() | |
self.model_selection = model_selection | |
self.params = params | |
# Stored equations: | |
self.equations = None | |
def __repr__(self): | |
return f"PySRRegressor(equations={self.get_best()['sympy_format']})" | |
def set_params(self, **params): | |
"""Set parameters for pysr.pysr call or model_selection strategy.""" | |
for key, value in params.items(): | |
if key == "model_selection": | |
self.model_selection = value | |
self.params[key] = value | |
return self | |
def get_params(self, deep=True): | |
del deep | |
return {**self.params, "model_selection": self.model_selection} | |
def get_best(self): | |
if self.equations is None: | |
return 0.0 | |
if self.model_selection == "accuracy": | |
return self.equations.iloc[-1] | |
elif self.model_selection == "best": | |
return best_row(self.equations) | |
else: | |
raise NotImplementedError | |
def fit(self, X, y): | |
self.equations = pysr( | |
X=X, | |
y=y, | |
**self.params, | |
) | |
return self | |
def predict(self, X): | |
equation_row = self.get_best() | |
np_format = equation_row["lambda_format"] | |
return np_format(X) | |