Spaces:
Sleeping
Sleeping
import unittest | |
import numpy as np | |
import pandas as pd | |
from pysr import sympy2torch, get_hof | |
import torch | |
import sympy | |
class TestTorch(unittest.TestCase): | |
def setUp(self): | |
np.random.seed(0) | |
def test_sympy2torch(self): | |
x, y, z = sympy.symbols('x y z') | |
cosx = 1.0 * sympy.cos(x) + y | |
X = torch.tensor(np.random.randn(1000, 3)) | |
true = 1.0 * torch.cos(X[:, 0]) + X[:, 1] | |
torch_module = sympy2torch(cosx, [x, y, z]) | |
self.assertTrue( | |
np.all(np.isclose(torch_module(X).detach().numpy(), true.detach().numpy())) | |
) | |
def test_pipeline(self): | |
X = np.random.randn(100, 10) | |
equations = pd.DataFrame({ | |
'Equation': ['1.0', 'cos(x0)', 'square(cos(x0))'], | |
'MSE': [1.0, 0.1, 1e-5], | |
'Complexity': [1, 2, 3] | |
}) | |
equations['Complexity MSE Equation'.split(' ')].to_csv( | |
'equation_file.csv.bkup', sep='|') | |
equations = get_hof( | |
'equation_file.csv', n_features=2, variables_names='x1 x2 x3'.split(' '), | |
extra_sympy_mappings={}, output_torch_format=True, | |
multioutput=False, nout=1, selection=[1, 2, 3]) | |
tformat = equations.iloc[-1].torch_format | |
np.testing.assert_almost_equal( | |
tformat(torch.tensor(X)).detach().numpy(), | |
np.square(np.cos(X[:, 1])), #Selection 1st feature | |
decimal=4 | |
) | |