PySR / eureqa.py
MilesCranmer's picture
Update hyperparams and docs to insertionOp
dcb0894
raw
history blame
11.5 kB
import os
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
from collections import namedtuple
import pathlib
import numpy as np
import pandas as pd
# Dumped from hyperparam optimization
default_alpha = 5
default_fractionReplaced = 0.1
default_fractionReplacedHof = 0.1
default_npop = 200
default_weightAddNode = 1
default_weightInsertNode = 1
default_weightDeleteNode = 1
default_weightMutateConstant = 10
default_weightMutateOperator = 1
default_weightRandomize = 1
default_weightSimplify = 1
default_weightDoNothing = 1
default_result = 1
default_topn = 10
default_parsimony = 0.0
def eureqa(X=None, y=None, threads=4,
niterations=20,
ncyclesperiteration=10000,
binary_operators=["plus", "mult"],
unary_operators=["cos", "exp", "sin"],
alpha=default_alpha,
annealing=True,
fractionReplaced=default_fractionReplaced,
fractionReplacedHof=default_fractionReplacedHof,
npop=int(default_npop),
parsimony=default_parsimony,
migration=True,
hofMigration=True,
shouldOptimizeConstants=True,
topn=int(default_topn),
weightAddNode=default_weightAddNode,
weightInsertNode=default_weightInsertNode,
weightDeleteNode=default_weightDeleteNode,
weightDoNothing=default_weightDoNothing,
weightMutateConstant=default_weightMutateConstant,
weightMutateOperator=default_weightMutateOperator,
weightRandomize=default_weightRandomize,
weightSimplify=default_weightSimplify,
timeout=None,
equation_file='hall_of_fame.csv',
test='simple1',
verbosity=1e9,
maxsize=20,
):
"""Run symbolic regression to fit f(X[i, :]) ~ y[i] for all i.
Note: most default parameters have been tuned over several example
equations, but you should adjust `threads`, `niterations`,
`binary_operators`, `unary_operators` to your requirements.
:param X: np.ndarray, 2D array. Rows are examples, columns are features.
:param y: np.ndarray, 1D array. Rows are examples.
:param threads: int, Number of threads (=number of populations running).
You can have more threads than cores - it actually makes it more
efficient.
:param niterations: int, Number of iterations of the algorithm to run. The best
equations are printed, and migrate between populations, at the
end of each.
:param ncyclesperiteration: int, Number of total mutations to run, per 10
samples of the population, per iteration.
:param binary_operators: list, List of strings giving the binary operators
in Julia's Base, or in `operator.jl`.
:param unary_operators: list, Same but for operators taking a single `Float32`.
:param alpha: float, Initial temperature.
:param annealing: bool, Whether to use annealing. You should (and it is default).
:param fractionReplaced: float, How much of population to replace with migrating
equations from other populations.
:param fractionReplacedHof: float, How much of population to replace with migrating
equations from hall of fame.
:param npop: int, Number of individuals in each population
:param parsimony: float, Multiplicative factor for how much to punish complexity.
:param migration: bool, Whether to migrate.
:param hofMigration: bool, Whether to have the hall of fame migrate.
:param shouldOptimizeConstants: bool, Whether to numerically optimize
constants (Nelder-Mead/Newton) at the end of each iteration.
:param topn: int, How many top individuals migrate from each population.
:param weightAddNode: float, Relative likelihood for mutation to add a node
:param weightInsertNode: float, Relative likelihood for mutation to insert a node
:param weightDeleteNode: float, Relative likelihood for mutation to delete a node
:param weightDoNothing: float, Relative likelihood for mutation to leave the individual
:param weightMutateConstant: float, Relative likelihood for mutation to change
the constant slightly in a random direction.
:param weightMutateOperator: float, Relative likelihood for mutation to swap
an operator.
:param weightRandomize: float, Relative likelihood for mutation to completely
delete and then randomly generate the equation
:param weightSimplify: float, Relative likelihood for mutation to simplify
constant parts by evaluation
:param timeout: float, Time in seconds to timeout search
:param equation_file: str, Where to save the files (.csv separated by |)
:param test: str, What test to run, if X,y not passed.
:param maxsize: int, Max size of an equation.
:returns: pd.DataFrame, Results dataframe, giving complexity, MSE, and equations
(as strings).
"""
rand_string = f'{"".join([str(np.random.rand())[2] for i in range(20)])}'
if isinstance(binary_operators, str): binary_operators = [binary_operators]
if isinstance(unary_operators, str): unary_operators = [unary_operators]
if X is None:
if test == 'simple1':
eval_str = "np.sign(X[:, 2])*np.abs(X[:, 2])**2.5 + 5*np.cos(X[:, 3]) - 5"
elif test == 'simple2':
eval_str = "np.sign(X[:, 2])*np.abs(X[:, 2])**3.5 + 1/(np.abs(X[:, 0])+1)"
elif test == 'simple3':
eval_str = "np.exp(X[:, 0]/2) + 12.0 + np.log(np.abs(X[:, 0])*10 + 1)"
elif test == 'simple4':
eval_str = "1.0 + 3*X[:, 0]**2 - 0.5*X[:, 0]**3 + 0.1*X[:, 0]**4"
elif test == 'simple5':
eval_str = "(np.exp(X[:, 3]) + 3)/(np.abs(X[:, 1]) + np.cos(X[:, 0]) + 1.1)"
X = np.random.randn(100, 5)*3
y = eval(eval_str)
print("Running on", eval_str)
def_hyperparams = f"""include("operators.jl")
const binops = {'[' + ', '.join(binary_operators) + ']'}
const unaops = {'[' + ', '.join(unary_operators) + ']'}
const ns=10;
const parsimony = {parsimony:f}f0
const alpha = {alpha:f}f0
const maxsize = {maxsize:d}
const migration = {'true' if migration else 'false'}
const hofMigration = {'true' if hofMigration else 'false'}
const fractionReplacedHof = {fractionReplacedHof}f0
const shouldOptimizeConstants = {'true' if shouldOptimizeConstants else 'false'}
const hofFile = "{equation_file}"
const nthreads = {threads:d}
const mutationWeights = [
{weightMutateConstant:f},
{weightMutateOperator:f},
{weightAddNode:f},
{weightInsertNode:f},
{weightDeleteNode:f},
{weightSimplify:f},
{weightRandomize:f},
{weightDoNothing:f}
]
"""
assert len(X.shape) == 2
assert len(y.shape) == 1
X_str = str(X.tolist()).replace('],', '];').replace(',', '')
y_str = str(y.tolist())
def_datasets = """const X = convert(Array{Float32, 2}, """f"{X_str})""""
const y = convert(Array{Float32, 1}, """f"{y_str})""""
"""
starting_path = f'cd {pathlib.Path().absolute()}'
code_path = f'cd {pathlib.Path(__file__).parent.absolute()}' #Move to filepath of code
os.system(code_path)
with open(f'.hyperparams_{rand_string}.jl', 'w') as f:
print(def_hyperparams, file=f)
with open(f'.dataset_{rand_string}.jl', 'w') as f:
print(def_datasets, file=f)
command = [
'julia -O3',
f'--threads {threads}',
'-e',
f'\'include(".hyperparams_{rand_string}.jl"); include(".dataset_{rand_string}.jl"); include("eureqa.jl"); fullRun({niterations:d}, npop={npop:d}, annealing={"true" if annealing else "false"}, ncyclesperiteration={ncyclesperiteration:d}, fractionReplaced={fractionReplaced:f}f0, verbosity=round(Int32, {verbosity:f}), topn={topn:d})\'',
]
if timeout is not None:
command = [f'timeout {timeout}'] + command
cur_cmd = ' '.join(command)
print("Running on", cur_cmd)
os.system(cur_cmd)
try:
output = pd.read_csv(equation_file, sep="|")
except FileNotFoundError:
print("Couldn't find equation file!")
output = pd.DataFrame()
os.system(starting_path)
return output
if __name__ == "__main__":
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument("--threads", type=int, default=4, help="Number of threads")
parser.add_argument("--parsimony", type=float, default=default_parsimony, help="How much to punish complexity")
parser.add_argument("--alpha", type=float, default=default_alpha, help="Scaling of temperature")
parser.add_argument("--maxsize", type=int, default=20, help="Max size of equation")
parser.add_argument("--niterations", type=int, default=20, help="Number of total migration periods")
parser.add_argument("--npop", type=int, default=int(default_npop), help="Number of members per population")
parser.add_argument("--ncyclesperiteration", type=int, default=10000, help="Number of evolutionary cycles per migration")
parser.add_argument("--topn", type=int, default=int(default_topn), help="How many best species to distribute from each population")
parser.add_argument("--fractionReplacedHof", type=float, default=default_fractionReplacedHof, help="Fraction of population to replace with hall of fame")
parser.add_argument("--fractionReplaced", type=float, default=default_fractionReplaced, help="Fraction of population to replace with best from other populations")
parser.add_argument("--weightAddNode", type=float, default=default_weightAddNode)
parser.add_argument("--weightInsertNode", type=float, default=default_weightInsertNode)
parser.add_argument("--weightDeleteNode", type=float, default=default_weightDeleteNode)
parser.add_argument("--weightMutateConstant", type=float, default=default_weightMutateConstant)
parser.add_argument("--weightMutateOperator", type=float, default=default_weightMutateOperator)
parser.add_argument("--weightRandomize", type=float, default=default_weightRandomize)
parser.add_argument("--weightSimplify", type=float, default=default_weightSimplify)
parser.add_argument("--weightDoNothing", type=float, default=default_weightDoNothing)
parser.add_argument("--migration", type=bool, default=True, help="Whether to migrate")
parser.add_argument("--hofMigration", type=bool, default=True, help="Whether to have hall of fame migration")
parser.add_argument("--shouldOptimizeConstants", type=bool, default=True, help="Whether to use classical optimization on constants before every migration (doesn't impact performance that much)")
parser.add_argument("--annealing", type=bool, default=True, help="Whether to use simulated annealing")
parser.add_argument("--equation_file", type=str, default='hall_of_fame.csv', help="File to dump best equations to")
parser.add_argument("--test", type=str, default='simple1', help="Which test to run")
parser.add_argument(
"--binary-operators", type=str, nargs="+", default=["plus", "mult"],
help="Binary operators. Make sure they are defined in operators.jl")
parser.add_argument(
"--unary-operators", type=str, nargs="+", default=["exp", "sin", "cos"],
help="Unary operators. Make sure they are defined in operators.jl")
args = vars(parser.parse_args()) #dict
eureqa(**args)