PySR / gui /app.py
MilesCranmer's picture
Working app?
f072863 unverified
raw
history blame
1.85 kB
import io
import gradio as gr
import os
import tempfile
def greet(
file_obj: tempfile._TemporaryFileWrapper,
col_to_fit: str,
niterations: int,
binary_operators: list,
unary_operators: list,
):
if col_to_fit == "":
raise ValueError("Please enter a column to predict")
niterations = int(niterations)
# Need to install PySR in separate python instance:
os.system(
"""if [ ! -d "$HOME/.julia/environments/pysr-0.9.1" ]
then
python -c 'import pysr; pysr.install()'
fi"""
)
from pysr import PySRRegressor
import numpy as np
import pandas as pd
df = pd.read_csv(file_obj.name)
y = np.array(df[col_to_fit])
X = df.drop([col_to_fit], axis=1)
model = PySRRegressor(
update=False,
temp_equation_file=True,
niterations=niterations,
binary_operators=binary_operators,
unary_operators=unary_operators,
)
model.fit(X, y)
return model.equations_
def main():
demo = gr.Interface(
fn=greet,
description="A demo of PySR",
inputs=[
gr.File(label="Upload a CSV file"),
gr.Textbox(placeholder="Column to predict"),
gr.Slider(
minimum=1,
maximum=1000,
value=40,
label="Number of iterations",
),
gr.CheckboxGroup(
choices=["+", "-", "*", "/", "^"],
label="Binary Operators",
value=["+", "-", "*", "/"],
),
gr.CheckboxGroup(
choices=["sin", "cos", "exp", "log"],
label="Unary Operators",
value=[],
),
],
outputs="dataframe",
)
# Add file to the demo:
demo.launch()
if __name__ == "__main__":
main()