PySR / pysr /feynman_problems.py
MilesCranmer's picture
Add pre-commit hook for isort
976f8d8 unverified
raw
history blame
5.62 kB
import csv
from functools import partial
from pathlib import Path
import numpy as np
from .sr import best, pysr
PKG_DIR = Path(__file__).parents[1]
FEYNMAN_DATASET = PKG_DIR / "datasets" / "FeynmanEquations.csv"
class Problem:
"""
Problem API to work with PySR.
Has attributes: X, y as pysr accepts, form which is a string representing the correct equation and variable_names
Should be able to call pysr(problem.X, problem.y, var_names=problem.var_names) and have it work
"""
def __init__(self, X, y, form=None, variable_names=None):
self.X = X
self.y = y
self.form = form
self.variable_names = variable_names
class FeynmanProblem(Problem):
"""
Stores the data for the problems from the 100 Feynman Equations on Physics.
This is the benchmark used in the AI Feynman Paper
"""
def __init__(self, row, gen=False, dp=500):
"""
row: a row read as a dict from the FeynmanEquations dataset provided in the datasets folder of the repo
gen: If true the problem will have dp X and y values randomly generated else they will be None
"""
self.eq_id = row["Filename"]
self.n_vars = int(row["# variables"])
super(FeynmanProblem, self).__init__(
None,
None,
form=row["Formula"],
variable_names=[row[f"v{i + 1}_name"] for i in range(self.n_vars)],
)
self.low = [float(row[f"v{i+1}_low"]) for i in range(self.n_vars)]
self.high = [float(row[f"v{i+1}_high"]) for i in range(self.n_vars)]
self.dp = dp
if gen:
self.X = np.random.uniform(0.01, 25, size=(self.dp, self.n_vars))
d = {}
for var in range(len(self.variable_names)):
d[self.variable_names[var]] = self.X[:, var]
d["exp"] = np.exp
d["sqrt"] = np.sqrt
d["pi"] = np.pi
d["cos"] = np.cos
d["sin"] = np.sin
d["tan"] = np.tan
d["tanh"] = np.tanh
d["ln"] = np.log
d["log"] = np.log # Quite sure the Feynman dataset has no base 10 logs
d["arcsin"] = np.arcsin
self.y = eval(self.form, d)
def __str__(self):
return f"Feynman Equation: {self.eq_id}|Form: {self.form}"
def __repr__(self):
return str(self)
def mk_problems(first=100, gen=False, dp=500, data_dir=FEYNMAN_DATASET):
"""
first: the first "first" equations from the dataset will be made into problems
data_dir: the path pointing to the Feynman Equations csv
returns: list of FeynmanProblems
"""
ret = []
with open(data_dir) as csvfile:
reader = csv.DictReader(csvfile)
for i, row in enumerate(reader):
if i > first:
break
if row["Filename"] == "":
continue
p = FeynmanProblem(row, gen=gen, dp=dp)
ret.append(p)
return ret
def run_on_problem(problem, verbosity=0, multiprocessing=True):
"""
Takes in a problem and returns a tuple: (equations, best predicted equation, actual equation)
"""
from time import time
starting = time()
equations = pysr(
problem.X,
problem.y,
variable_names=problem.variable_names,
verbosity=verbosity,
)
timing = time() - starting
others = {"time": timing, "problem": problem}
if not multiprocessing:
others["equations"] = equations
return str(best(equations)), problem.form, others
def do_feynman_experiments_parallel(
first=100,
verbosity=0,
dp=500,
output_file_path="FeynmanExperiment.csv",
data_dir=FEYNMAN_DATASET,
):
import multiprocessing as mp
from tqdm import tqdm
problems = mk_problems(first=first, gen=True, dp=dp, data_dir=data_dir)
ids = []
predictions = []
true_equations = []
time_takens = []
pool = mp.Pool()
results = []
with tqdm(total=len(problems)) as pbar:
f = partial(run_on_problem, verbosity=verbosity)
for i, res in enumerate(pool.imap(f, problems)):
results.append(res)
pbar.update()
for res in results:
prediction, true_equation, others = res
problem = others["problem"]
ids.append(problem.eq_id)
predictions.append(prediction)
true_equations.append(true_equation)
time_takens.append(others["time"])
with open(output_file_path, "a") as f:
writer = csv.writer(f, delimiter=",")
writer.writerow(["ID", "Predicted", "True", "Time"])
for i in range(len(ids)):
writer.writerow([ids[i], predictions[i], true_equations[i], time_takens[i]])
def do_feynman_experiments(
first=100,
verbosity=0,
dp=500,
output_file_path="FeynmanExperiment.csv",
data_dir=FEYNMAN_DATASET,
):
from tqdm import tqdm
problems = mk_problems(first=first, gen=True, dp=dp, data_dir=data_dir)
ids = []
predictions = []
true_equations = []
time_takens = []
for problem in tqdm(problems):
prediction, true_equation, others = run_on_problem(problem, verbosity)
ids.append(problem.eq_id)
predictions.append(prediction)
true_equations.append(true_equation)
time_takens.append(others["time"])
with open(output_file_path, "a") as f:
writer = csv.writer(f, delimiter=",")
writer.writerow(["ID", "Predicted", "True", "Time"])
for i in range(len(ids)):
writer.writerow([ids[i], predictions[i], true_equations[i], time_takens[i]])