PySR / pysr /test /test.py
MilesCranmer's picture
Include test for changed options
5edf565
raw
history blame
34.8 kB
import os
import traceback
import inspect
import unittest
import numpy as np
from sklearn import model_selection
from sklearn.utils.estimator_checks import check_estimator
import sympy
import pandas as pd
import warnings
import pickle as pkl
import tempfile
from pathlib import Path
from .. import julia_helpers
from .. import PySRRegressor
from ..sr import (
run_feature_selection,
_handle_feature_selection,
_csv_filename_to_pkl_filename,
idx_model_selection,
)
from ..export_latex import to_latex
DEFAULT_PARAMS = inspect.signature(PySRRegressor.__init__).parameters
DEFAULT_NITERATIONS = DEFAULT_PARAMS["niterations"].default
DEFAULT_POPULATIONS = DEFAULT_PARAMS["populations"].default
DEFAULT_NCYCLES = DEFAULT_PARAMS["ncyclesperiteration"].default
class TestPipeline(unittest.TestCase):
def setUp(self):
# Using inspect,
# get default niterations from PySRRegressor, and double them:
self.default_test_kwargs = dict(
progress=False,
model_selection="accuracy",
niterations=DEFAULT_NITERATIONS * 2,
populations=DEFAULT_POPULATIONS * 2,
temp_equation_file=True,
)
self.rstate = np.random.RandomState(0)
self.X = self.rstate.randn(100, 5)
def test_linear_relation(self):
y = self.X[:, 0]
model = PySRRegressor(
**self.default_test_kwargs,
early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 1",
)
model.fit(self.X, y)
print(model.equations_)
self.assertLessEqual(model.get_best()["loss"], 1e-4)
def test_linear_relation_named(self):
y = self.X[:, 0]
model = PySRRegressor(
**self.default_test_kwargs,
early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 1",
)
model.fit(self.X, y, variable_names=["c1", "c2", "c3", "c4", "c5"])
self.assertIn("c1", model.equations_.iloc[-1]["equation"])
def test_linear_relation_weighted(self):
y = self.X[:, 0]
weights = np.ones_like(y)
model = PySRRegressor(
**self.default_test_kwargs,
early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 1",
)
model.fit(self.X, y, weights=weights)
print(model.equations_)
self.assertLessEqual(model.get_best()["loss"], 1e-4)
def test_multiprocessing_turbo(self):
y = self.X[:, 0]
model = PySRRegressor(
**self.default_test_kwargs,
# Turbo needs to work with unsafe operators:
unary_operators=["sqrt"],
procs=2,
multithreading=False,
turbo=True,
early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 1",
)
model.fit(self.X, y)
print(model.equations_)
self.assertLessEqual(model.equations_.iloc[-1]["loss"], 1e-4)
def test_high_precision_search(self):
y = 1.23456789 * self.X[:, 0]
model = PySRRegressor(
**self.default_test_kwargs,
early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 3",
precision=64,
parsimony=0.01,
warm_start=True,
)
model.fit(self.X, y)
from pysr.sr import Main
# We should have that the model state is now a Float64 hof:
Main.test_state = model.raw_julia_state_
self.assertTrue(Main.eval("typeof(test_state[2]).parameters[1] == Float64"))
def test_multioutput_custom_operator_quiet_custom_complexity(self):
y = self.X[:, [0, 1]] ** 2
model = PySRRegressor(
unary_operators=["square_op(x) = x^2"],
extra_sympy_mappings={"square_op": lambda x: x**2},
complexity_of_operators={"square_op": 2, "plus": 1},
binary_operators=["plus"],
verbosity=0,
**self.default_test_kwargs,
procs=0,
# Test custom operators with turbo:
turbo=True,
# Test custom operators with constraints:
nested_constraints={"square_op": {"square_op": 3}},
constraints={"square_op": 10},
early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 3",
)
model.fit(self.X, y)
equations = model.equations_
print(equations)
self.assertIn("square_op", model.equations_[0].iloc[-1]["equation"])
self.assertLessEqual(equations[0].iloc[-1]["loss"], 1e-4)
self.assertLessEqual(equations[1].iloc[-1]["loss"], 1e-4)
test_y1 = model.predict(self.X)
test_y2 = model.predict(self.X, index=[-1, -1])
mse1 = np.average((test_y1 - y) ** 2)
mse2 = np.average((test_y2 - y) ** 2)
self.assertLessEqual(mse1, 1e-4)
self.assertLessEqual(mse2, 1e-4)
bad_y = model.predict(self.X, index=[0, 0])
bad_mse = np.average((bad_y - y) ** 2)
self.assertGreater(bad_mse, 1e-4)
def test_multioutput_weighted_with_callable_temp_equation(self):
X = self.X.copy()
y = X[:, [0, 1]] ** 2
w = self.rstate.rand(*y.shape)
w[w < 0.5] = 0.0
w[w >= 0.5] = 1.0
# Double equation when weights are 0:
y = (2 - w) * y
# Thus, pysr needs to use the weights to find the right equation!
model = PySRRegressor(
unary_operators=["sq(x) = x^2"],
binary_operators=["plus"],
extra_sympy_mappings={"sq": lambda x: x**2},
**self.default_test_kwargs,
procs=0,
delete_tempfiles=False,
early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 2",
)
model.fit(X.copy(), y, weights=w)
# These tests are flaky, so don't fail test:
try:
np.testing.assert_almost_equal(
model.predict(X.copy())[:, 0], X[:, 0] ** 2, decimal=3
)
except AssertionError:
print("Error in test_multioutput_weighted_with_callable_temp_equation")
print("Model equations: ", model.sympy()[0])
print("True equation: x0^2")
try:
np.testing.assert_almost_equal(
model.predict(X.copy())[:, 1], X[:, 1] ** 2, decimal=3
)
except AssertionError:
print("Error in test_multioutput_weighted_with_callable_temp_equation")
print("Model equations: ", model.sympy()[1])
print("True equation: x1^2")
def test_empty_operators_single_input_warm_start(self):
X = self.rstate.randn(100, 1)
y = X[:, 0] + 3.0
regressor = PySRRegressor(
unary_operators=[],
binary_operators=["plus"],
**self.default_test_kwargs,
early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 3",
)
self.assertTrue("None" in regressor.__repr__())
regressor.fit(X, y)
self.assertTrue("None" not in regressor.__repr__())
self.assertTrue(">>>>" in regressor.__repr__())
self.assertLessEqual(regressor.equations_.iloc[-1]["loss"], 1e-4)
np.testing.assert_almost_equal(regressor.predict(X), y, decimal=1)
# Test if repeated fit works:
regressor.set_params(
niterations=1,
ncyclesperiteration=2,
warm_start=True,
early_stop_condition=None,
)
# Check that the the julia state is saved:
from pysr.sr import Main
# We should have that the model state is now a Float32 hof:
Main.test_state = regressor.raw_julia_state_
self.assertTrue(Main.eval("typeof(test_state[2]).parameters[1] == Float32"))
# This should exit almost immediately, and use the old equations
regressor.fit(X, y)
self.assertLessEqual(regressor.equations_.iloc[-1]["loss"], 1e-4)
np.testing.assert_almost_equal(regressor.predict(X), y, decimal=1)
# Tweak model selection:
regressor.set_params(model_selection="best")
self.assertEqual(regressor.get_params()["model_selection"], "best")
self.assertTrue("None" not in regressor.__repr__())
self.assertTrue(">>>>" in regressor.__repr__())
def test_warm_start_set_at_init(self):
# Smoke test for bug where warm_start=True is set at init
y = self.X[:, 0]
regressor = PySRRegressor(warm_start=True, max_evals=10)
regressor.fit(self.X, y)
def test_noisy(self):
y = self.X[:, [0, 1]] ** 2 + self.rstate.randn(self.X.shape[0], 1) * 0.05
model = PySRRegressor(
# Test that passing a single operator works:
unary_operators="sq(x) = x^2",
binary_operators="plus",
extra_sympy_mappings={"sq": lambda x: x**2},
**self.default_test_kwargs,
procs=0,
denoise=True,
early_stop_condition="stop_if(loss, complexity) = loss < 0.05 && complexity == 2",
)
# We expect in this case that the "best"
# equation should be the right one:
model.set_params(model_selection="best")
# Also try without a temp equation file:
model.set_params(temp_equation_file=False)
model.fit(self.X, y)
self.assertLessEqual(model.get_best()[1]["loss"], 1e-2)
self.assertLessEqual(model.get_best()[1]["loss"], 1e-2)
def test_pandas_resample_with_nested_constraints(self):
X = pd.DataFrame(
{
"T": self.rstate.randn(500),
"x": self.rstate.randn(500),
"unused_feature": self.rstate.randn(500),
}
)
true_fn = lambda x: np.array(x["T"] + x["x"] ** 2 + 1.323837)
y = true_fn(X)
noise = self.rstate.randn(500) * 0.01
y = y + noise
# We also test y as a pandas array:
y = pd.Series(y)
# Resampled array is a different order of features:
Xresampled = pd.DataFrame(
{
"unused_feature": self.rstate.randn(100),
"x": self.rstate.randn(100),
"T": self.rstate.randn(100),
}
)
model = PySRRegressor(
unary_operators=[],
binary_operators=["+", "*", "/", "-"],
**self.default_test_kwargs,
denoise=True,
nested_constraints={"/": {"+": 1, "-": 1}, "+": {"*": 4}},
early_stop_condition="stop_if(loss, complexity) = loss < 1e-3 && complexity == 7",
)
model.fit(X, y, Xresampled=Xresampled)
self.assertNotIn("unused_feature", model.latex())
self.assertIn("T", model.latex())
self.assertIn("x", model.latex())
self.assertLessEqual(model.get_best()["loss"], 1e-1)
fn = model.get_best()["lambda_format"]
X2 = pd.DataFrame(
{
"T": self.rstate.randn(100),
"unused_feature": self.rstate.randn(100),
"x": self.rstate.randn(100),
}
)
self.assertLess(np.average((fn(X2) - true_fn(X2)) ** 2), 1e-1)
self.assertLess(np.average((model.predict(X2) - true_fn(X2)) ** 2), 1e-1)
def test_high_dim_selection_early_stop(self):
X = pd.DataFrame({f"k{i}": self.rstate.randn(10000) for i in range(10)})
Xresampled = pd.DataFrame({f"k{i}": self.rstate.randn(100) for i in range(10)})
y = X["k7"] ** 2 + np.cos(X["k9"]) * 3
model = PySRRegressor(
unary_operators=["cos"],
select_k_features=3,
early_stop_condition=1e-4, # Stop once most accurate equation is <1e-4 MSE
maxsize=12,
**self.default_test_kwargs,
)
model.set_params(model_selection="accuracy")
model.fit(X, y, Xresampled=Xresampled)
self.assertLess(np.average((model.predict(X) - y) ** 2), 1e-4)
# Again, but with numpy arrays:
model.fit(X.values, y.values, Xresampled=Xresampled.values)
self.assertLess(np.average((model.predict(X.values) - y.values) ** 2), 1e-4)
def test_load_model(self):
"""See if we can load a ran model from the equation file."""
csv_file_data = """
Complexity,Loss,Equation
1,0.19951081,"1.9762075"
3,0.12717344,"(f0 + 1.4724599)"
4,0.104823045,"pow_abs(2.2683423, cos(f3))\""""
# Strip the indents:
csv_file_data = "\n".join([l.strip() for l in csv_file_data.split("\n")])
for from_backup in [False, True]:
rand_dir = Path(tempfile.mkdtemp())
equation_filename = str(rand_dir / "equation.csv")
with open(equation_filename + (".bkup" if from_backup else ""), "w") as f:
f.write(csv_file_data)
model = PySRRegressor.from_file(
equation_filename,
n_features_in=5,
feature_names_in=["f0", "f1", "f2", "f3", "f4"],
binary_operators=["+", "*", "/", "-", "^"],
unary_operators=["cos"],
)
X = self.rstate.rand(100, 5)
y_truth = 2.2683423 ** np.cos(X[:, 3])
y_test = model.predict(X, 2)
np.testing.assert_allclose(y_truth, y_test)
def test_load_model_simple(self):
# Test that we can simply load a model from its equation file.
y = self.X[:, [0, 1]] ** 2
model = PySRRegressor(
# Test that passing a single operator works:
unary_operators="sq(x) = x^2",
binary_operators="plus",
extra_sympy_mappings={"sq": lambda x: x**2},
**self.default_test_kwargs,
procs=0,
denoise=True,
early_stop_condition="stop_if(loss, complexity) = loss < 0.05 && complexity == 2",
)
rand_dir = Path(tempfile.mkdtemp())
equation_file = rand_dir / "equations.csv"
model.set_params(temp_equation_file=False)
model.set_params(equation_file=equation_file)
model.fit(self.X, y)
# lambda functions are removed from the pickling, so we need
# to pass it during the loading:
model2 = PySRRegressor.from_file(
model.equation_file_, extra_sympy_mappings={"sq": lambda x: x**2}
)
np.testing.assert_allclose(model.predict(self.X), model2.predict(self.X))
# Try again, but using only the pickle file:
for file_to_delete in [str(equation_file), str(equation_file) + ".bkup"]:
if os.path.exists(file_to_delete):
os.remove(file_to_delete)
pickle_file = rand_dir / "equations.pkl"
model3 = PySRRegressor.from_file(
model.equation_file_, extra_sympy_mappings={"sq": lambda x: x**2}
)
np.testing.assert_allclose(model.predict(self.X), model3.predict(self.X))
def manually_create_model(equations, feature_names=None):
if feature_names is None:
feature_names = ["x0", "x1"]
model = PySRRegressor(
progress=False,
niterations=1,
extra_sympy_mappings={},
output_jax_format=False,
model_selection="accuracy",
equation_file="equation_file.csv",
)
# Set up internal parameters as if it had been fitted:
if isinstance(equations, list):
# Multi-output.
model.equation_file_ = "equation_file.csv"
model.nout_ = len(equations)
model.selection_mask_ = None
model.feature_names_in_ = np.array(feature_names, dtype=object)
for i in range(model.nout_):
equations[i]["complexity loss equation".split(" ")].to_csv(
f"equation_file.csv.out{i+1}.bkup"
)
else:
model.equation_file_ = "equation_file.csv"
model.nout_ = 1
model.selection_mask_ = None
model.feature_names_in_ = np.array(feature_names, dtype=object)
equations["complexity loss equation".split(" ")].to_csv(
"equation_file.csv.bkup"
)
model.refresh()
return model
class TestBest(unittest.TestCase):
def setUp(self):
self.rstate = np.random.RandomState(0)
self.X = self.rstate.randn(10, 2)
self.y = np.cos(self.X[:, 0]) ** 2
equations = pd.DataFrame(
{
"equation": ["1.0", "cos(x0)", "square(cos(x0))"],
"loss": [1.0, 0.1, 1e-5],
"complexity": [1, 2, 3],
}
)
self.model = manually_create_model(equations)
self.equations_ = self.model.equations_
def test_best(self):
self.assertEqual(self.model.sympy(), sympy.cos(sympy.Symbol("x0")) ** 2)
def test_index_selection(self):
self.assertEqual(self.model.sympy(-1), sympy.cos(sympy.Symbol("x0")) ** 2)
self.assertEqual(self.model.sympy(2), sympy.cos(sympy.Symbol("x0")) ** 2)
self.assertEqual(self.model.sympy(1), sympy.cos(sympy.Symbol("x0")))
self.assertEqual(self.model.sympy(0), 1.0)
def test_best_tex(self):
self.assertEqual(self.model.latex(), "\\cos^{2}{\\left(x_{0} \\right)}")
def test_best_lambda(self):
X = self.X
y = self.y
for f in [self.model.predict, self.equations_.iloc[-1]["lambda_format"]]:
np.testing.assert_almost_equal(f(X), y, decimal=3)
def test_all_selection_strategies(self):
equations = pd.DataFrame(
dict(
loss=[1.0, 0.1, 0.01, 0.001 * 1.4, 0.001],
score=[0.5, 1.0, 0.5, 0.5, 0.3],
)
)
idx_accuracy = idx_model_selection(equations, "accuracy")
self.assertEqual(idx_accuracy, 4)
idx_best = idx_model_selection(equations, "best")
self.assertEqual(idx_best, 3)
idx_score = idx_model_selection(equations, "score")
self.assertEqual(idx_score, 1)
class TestFeatureSelection(unittest.TestCase):
def setUp(self):
self.rstate = np.random.RandomState(0)
def test_feature_selection(self):
X = self.rstate.randn(20000, 5)
y = X[:, 2] ** 2 + X[:, 3] ** 2
selected = run_feature_selection(X, y, select_k_features=2)
self.assertEqual(sorted(selected), [2, 3])
def test_feature_selection_handler(self):
X = self.rstate.randn(20000, 5)
y = X[:, 2] ** 2 + X[:, 3] ** 2
var_names = [f"x{i}" for i in range(5)]
selected_X, selection = _handle_feature_selection(
X,
select_k_features=2,
variable_names=var_names,
y=y,
)
self.assertTrue((2 in selection) and (3 in selection))
selected_var_names = [var_names[i] for i in selection]
self.assertEqual(set(selected_var_names), set("x2 x3".split(" ")))
np.testing.assert_array_equal(
np.sort(selected_X, axis=1), np.sort(X[:, [2, 3]], axis=1)
)
class TestMiscellaneous(unittest.TestCase):
"""Test miscellaneous functions."""
def test_csv_to_pkl_conversion(self):
"""Test that csv filename to pkl filename works as expected."""
tmpdir = Path(tempfile.mkdtemp())
equation_file = tmpdir / "equations.389479384.28378374.csv"
expected_pkl_file = tmpdir / "equations.389479384.28378374.pkl"
# First, test inputting the paths:
test_pkl_file = _csv_filename_to_pkl_filename(equation_file)
self.assertEqual(test_pkl_file, str(expected_pkl_file))
# Next, test inputting the strings.
test_pkl_file = _csv_filename_to_pkl_filename(str(equation_file))
self.assertEqual(test_pkl_file, str(expected_pkl_file))
def test_deprecation(self):
"""Ensure that deprecation works as expected.
This should give a warning, and sets the correct value.
"""
with self.assertWarns(FutureWarning):
model = PySRRegressor(fractionReplaced=0.2)
# This is a deprecated parameter, so we should get a warning.
# The correct value should be set:
self.assertEqual(model.fraction_replaced, 0.2)
def test_size_warning(self):
"""Ensure that a warning is given for a large input size."""
model = PySRRegressor()
X = np.random.randn(10001, 2)
y = np.random.randn(10001)
with warnings.catch_warnings():
warnings.simplefilter("error")
with self.assertRaises(Exception) as context:
model.fit(X, y)
self.assertIn("more than 10,000", str(context.exception))
def test_feature_warning(self):
"""Ensure that a warning is given for large number of features."""
model = PySRRegressor()
X = np.random.randn(100, 10)
y = np.random.randn(100)
with warnings.catch_warnings():
warnings.simplefilter("error")
with self.assertRaises(Exception) as context:
model.fit(X, y)
self.assertIn("with 10 features or more", str(context.exception))
def test_deterministic_warnings(self):
"""Ensure that warnings are given for determinism"""
model = PySRRegressor(random_state=0)
X = np.random.randn(100, 2)
y = np.random.randn(100)
with warnings.catch_warnings():
warnings.simplefilter("error")
with self.assertRaises(Exception) as context:
model.fit(X, y)
self.assertIn("`deterministic`", str(context.exception))
def test_deterministic_errors(self):
"""Setting deterministic without random_state should error"""
model = PySRRegressor(deterministic=True)
X = np.random.randn(100, 2)
y = np.random.randn(100)
with self.assertRaises(ValueError):
model.fit(X, y)
def test_changed_options_warning(self):
"""Check that a warning is given if Julia options are changed."""
if julia_helpers.julia_kwargs_at_initialization is None:
julia_helpers.init_julia(julia_kwargs={"threads": 2, "optimize": 3})
cur_init = julia_helpers.julia_kwargs_at_initialization
threads_to_change = cur_init["threads"] + 1
with warnings.catch_warnings():
warnings.simplefilter("error")
with self.assertRaises(Exception) as context:
julia_helpers.init_julia(
julia_kwargs={"threads": threads_to_change, "optimize": 3}
)
self.assertIn("Julia has already started", str(context.exception))
self.assertIn("threads", str(context.exception))
def test_extra_sympy_mappings_undefined(self):
"""extra_sympy_mappings=None errors for custom operators"""
model = PySRRegressor(unary_operators=["square2(x) = x^2"])
X = np.random.randn(100, 2)
y = np.random.randn(100)
with self.assertRaises(ValueError):
model.fit(X, y)
def test_sympy_function_fails_as_variable(self):
model = PySRRegressor()
X = np.random.randn(100, 2)
y = np.random.randn(100)
with self.assertRaises(ValueError) as cm:
model.fit(X, y, variable_names=["x1", "N"])
self.assertIn("Variable name", str(cm.exception))
def test_bad_variable_names_fail(self):
model = PySRRegressor()
X = np.random.randn(100, 1)
y = np.random.randn(100)
with self.assertRaises(ValueError) as cm:
model.fit(X, y, variable_names=["Tr(Tij)"])
self.assertIn("Invalid variable name", str(cm.exception))
with self.assertRaises(ValueError) as cm:
model.fit(X, y, variable_names=["f{c}"])
self.assertIn("Invalid variable name", str(cm.exception))
def test_pickle_with_temp_equation_file(self):
"""If we have a temporary equation file, unpickle the estimator."""
model = PySRRegressor(
populations=int(1 + DEFAULT_POPULATIONS / 5),
temp_equation_file=True,
procs=0,
multithreading=False,
)
nout = 3
X = np.random.randn(100, 2)
y = np.random.randn(100, nout)
model.fit(X, y)
contents = model.equation_file_contents_.copy()
y_predictions = model.predict(X)
equation_file_base = model.equation_file_
for i in range(1, nout + 1):
assert not os.path.exists(str(equation_file_base) + f".out{i}.bkup")
with tempfile.NamedTemporaryFile() as pickle_file:
pkl.dump(model, pickle_file)
pickle_file.seek(0)
model2 = pkl.load(pickle_file)
contents2 = model2.equation_file_contents_
cols_to_check = ["equation", "loss", "complexity"]
for frame1, frame2 in zip(contents, contents2):
pd.testing.assert_frame_equal(frame1[cols_to_check], frame2[cols_to_check])
y_predictions2 = model2.predict(X)
np.testing.assert_array_equal(y_predictions, y_predictions2)
def test_scikit_learn_compatibility(self):
"""Test PySRRegressor compatibility with scikit-learn."""
model = PySRRegressor(
niterations=int(1 + DEFAULT_NITERATIONS / 10),
populations=int(1 + DEFAULT_POPULATIONS / 3),
ncyclesperiteration=int(2 + DEFAULT_NCYCLES / 10),
verbosity=0,
progress=False,
random_state=0,
deterministic=True, # Deterministic as tests require this.
procs=0,
multithreading=False,
warm_start=False,
temp_equation_file=True,
) # Return early.
check_generator = check_estimator(model, generate_only=True)
exception_messages = []
for (_, check) in check_generator:
try:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
check(model)
print("Passed", check.func.__name__)
except Exception:
error_message = str(traceback.format_exc())
exception_messages.append(
f"{check.func.__name__}:\n" + error_message + "\n"
)
print("Failed", check.func.__name__, "with:")
# Add a leading tab to error message, which
# might be multi-line:
print("\n".join([(" " * 4) + row for row in error_message.split("\n")]))
# If any checks failed don't let the test pass.
self.assertEqual(len(exception_messages), 0)
TRUE_PREAMBLE = "\n".join(
[
r"\usepackage{breqn}",
r"\usepackage{booktabs}",
"",
"...",
"",
]
)
class TestLaTeXTable(unittest.TestCase):
def setUp(self):
equations = pd.DataFrame(
dict(
equation=["x0", "cos(x0)", "x0 + x1 - cos(x1 * x0)"],
loss=[1.052, 0.02315, 1.12347e-15],
complexity=[1, 2, 8],
)
)
self.model = manually_create_model(equations)
self.maxDiff = None
def create_true_latex(self, middle_part, include_score=False):
if include_score:
true_latex_table_str = r"""
\begin{table}[h]
\begin{center}
\begin{tabular}{@{}cccc@{}}
\toprule
Equation & Complexity & Loss & Score \\
\midrule"""
else:
true_latex_table_str = r"""
\begin{table}[h]
\begin{center}
\begin{tabular}{@{}ccc@{}}
\toprule
Equation & Complexity & Loss \\
\midrule"""
true_latex_table_str += middle_part
true_latex_table_str += r"""\bottomrule
\end{tabular}
\end{center}
\end{table}
"""
# First, remove empty lines:
true_latex_table_str = "\n".join(
[line.strip() for line in true_latex_table_str.split("\n") if len(line) > 0]
)
return true_latex_table_str.strip()
def test_simple_table(self):
latex_table_str = self.model.latex_table(
columns=["equation", "complexity", "loss"]
)
middle_part = r"""
$y = x_{0}$ & $1$ & $1.05$ \\
$y = \cos{\left(x_{0} \right)}$ & $2$ & $0.0232$ \\
$y = x_{0} + x_{1} - \cos{\left(x_{0} x_{1} \right)}$ & $8$ & $1.12 \cdot 10^{-15}$ \\
"""
true_latex_table_str = (
TRUE_PREAMBLE + "\n" + self.create_true_latex(middle_part)
)
self.assertEqual(latex_table_str, true_latex_table_str)
def test_other_precision(self):
latex_table_str = self.model.latex_table(
precision=5, columns=["equation", "complexity", "loss"]
)
middle_part = r"""
$y = x_{0}$ & $1$ & $1.0520$ \\
$y = \cos{\left(x_{0} \right)}$ & $2$ & $0.023150$ \\
$y = x_{0} + x_{1} - \cos{\left(x_{0} x_{1} \right)}$ & $8$ & $1.1235 \cdot 10^{-15}$ \\
"""
true_latex_table_str = (
TRUE_PREAMBLE + "\n" + self.create_true_latex(middle_part)
)
self.assertEqual(latex_table_str, true_latex_table_str)
def test_include_score(self):
latex_table_str = self.model.latex_table()
middle_part = r"""
$y = x_{0}$ & $1$ & $1.05$ & $0.0$ \\
$y = \cos{\left(x_{0} \right)}$ & $2$ & $0.0232$ & $3.82$ \\
$y = x_{0} + x_{1} - \cos{\left(x_{0} x_{1} \right)}$ & $8$ & $1.12 \cdot 10^{-15}$ & $5.11$ \\
"""
true_latex_table_str = (
TRUE_PREAMBLE
+ "\n"
+ self.create_true_latex(middle_part, include_score=True)
)
self.assertEqual(latex_table_str, true_latex_table_str)
def test_last_equation(self):
latex_table_str = self.model.latex_table(
indices=[2], columns=["equation", "complexity", "loss"]
)
middle_part = r"""
$y = x_{0} + x_{1} - \cos{\left(x_{0} x_{1} \right)}$ & $8$ & $1.12 \cdot 10^{-15}$ \\
"""
true_latex_table_str = (
TRUE_PREAMBLE + "\n" + self.create_true_latex(middle_part)
)
self.assertEqual(latex_table_str, true_latex_table_str)
def test_multi_output(self):
equations1 = pd.DataFrame(
dict(
equation=["x0", "cos(x0)", "x0 + x1 - cos(x1 * x0)"],
loss=[1.052, 0.02315, 1.12347e-15],
complexity=[1, 2, 8],
)
)
equations2 = pd.DataFrame(
dict(
equation=["x1", "cos(x1)", "x0 * x0 * x1"],
loss=[1.32, 0.052, 2e-15],
complexity=[1, 2, 5],
)
)
equations = [equations1, equations2]
model = manually_create_model(equations)
middle_part_1 = r"""
$y_{0} = x_{0}$ & $1$ & $1.05$ & $0.0$ \\
$y_{0} = \cos{\left(x_{0} \right)}$ & $2$ & $0.0232$ & $3.82$ \\
$y_{0} = x_{0} + x_{1} - \cos{\left(x_{0} x_{1} \right)}$ & $8$ & $1.12 \cdot 10^{-15}$ & $5.11$ \\
"""
middle_part_2 = r"""
$y_{1} = x_{1}$ & $1$ & $1.32$ & $0.0$ \\
$y_{1} = \cos{\left(x_{1} \right)}$ & $2$ & $0.0520$ & $3.23$ \\
$y_{1} = x_{0}^{2} x_{1}$ & $5$ & $2.00 \cdot 10^{-15}$ & $10.3$ \\
"""
true_latex_table_str = "\n\n".join(
self.create_true_latex(part, include_score=True)
for part in [middle_part_1, middle_part_2]
)
true_latex_table_str = TRUE_PREAMBLE + "\n" + true_latex_table_str
latex_table_str = model.latex_table()
self.assertEqual(latex_table_str, true_latex_table_str)
def test_latex_float_precision(self):
"""Test that we can print latex expressions with custom precision"""
expr = sympy.Float(4583.4485748, dps=50)
self.assertEqual(to_latex(expr, prec=6), r"4583.45")
self.assertEqual(to_latex(expr, prec=5), r"4583.4")
self.assertEqual(to_latex(expr, prec=4), r"4583.")
self.assertEqual(to_latex(expr, prec=3), r"4.58 \cdot 10^{3}")
self.assertEqual(to_latex(expr, prec=2), r"4.6 \cdot 10^{3}")
# Multiple numbers:
x = sympy.Symbol("x")
expr = x * 3232.324857384 - 1.4857485e-10
self.assertEqual(
to_latex(expr, prec=2), "3.2 \cdot 10^{3} x - 1.5 \cdot 10^{-10}"
)
self.assertEqual(
to_latex(expr, prec=3), "3.23 \cdot 10^{3} x - 1.49 \cdot 10^{-10}"
)
self.assertEqual(
to_latex(expr, prec=8), "3232.3249 x - 1.4857485 \cdot 10^{-10}"
)
def test_latex_break_long_equation(self):
"""Test that we can break a long equation inside the table"""
long_equation = """
- cos(x1 * x0) + 3.2 * x0 - 1.2 * x1 + x1 * x1 * x1 + x0 * x0 * x0
+ 5.2 * sin(0.3256 * sin(x2) - 2.6 * x0) + x0 * x0 * x0 * x0 * x0
+ cos(cos(x1 * x0) + 3.2 * x0 - 1.2 * x1 + x1 * x1 * x1 + x0 * x0 * x0)
"""
long_equation = "".join(long_equation.split("\n")).strip()
equations = pd.DataFrame(
dict(
equation=["x0", "cos(x0)", long_equation],
loss=[1.052, 0.02315, 1.12347e-15],
complexity=[1, 2, 30],
)
)
model = manually_create_model(equations)
latex_table_str = model.latex_table()
middle_part = r"""
$y = x_{0}$ & $1$ & $1.05$ & $0.0$ \\
$y = \cos{\left(x_{0} \right)}$ & $2$ & $0.0232$ & $3.82$ \\
\begin{minipage}{0.8\linewidth} \vspace{-1em} \begin{dmath*} y = x_{0}^{5} + x_{0}^{3} + 3.20 x_{0} + x_{1}^{3} - 1.20 x_{1} - 5.20 \sin{\left(2.60 x_{0} - 0.326 \sin{\left(x_{2} \right)} \right)} - \cos{\left(x_{0} x_{1} \right)} + \cos{\left(x_{0}^{3} + 3.20 x_{0} + x_{1}^{3} - 1.20 x_{1} + \cos{\left(x_{0} x_{1} \right)} \right)} \end{dmath*} \end{minipage} & $30$ & $1.12 \cdot 10^{-15}$ & $1.09$ \\
"""
true_latex_table_str = (
TRUE_PREAMBLE
+ "\n"
+ self.create_true_latex(middle_part, include_score=True)
)
self.assertEqual(latex_table_str, true_latex_table_str)
def runtests():
"""Run all tests in test.py."""
suite = unittest.TestSuite()
loader = unittest.TestLoader()
test_cases = [
TestPipeline,
TestBest,
TestFeatureSelection,
TestMiscellaneous,
TestLaTeXTable,
]
for test_case in test_cases:
tests = loader.loadTestsFromTestCase(test_case)
suite.addTests(tests)
runner = unittest.TextTestRunner()
return runner.run(suite)