Spaces:
Running
Running
import unittest | |
from unittest.mock import patch | |
import numpy as np | |
from pysr import pysr, get_hof, best, best_tex, best_callable, best_row, PySRRegressor | |
from pysr.sr import run_feature_selection, _handle_feature_selection, _yesno | |
import sympy | |
from sympy import lambdify | |
import pandas as pd | |
class TestPipeline(unittest.TestCase): | |
def setUp(self): | |
self.default_test_kwargs = dict( | |
niterations=10, | |
populations=4, | |
annealing=True, | |
useFrequency=False, | |
) | |
np.random.seed(0) | |
self.X = np.random.randn(100, 5) | |
def test_linear_relation(self): | |
y = self.X[:, 0] | |
equations = pysr(self.X, y, **self.default_test_kwargs) | |
print(equations) | |
self.assertLessEqual(equations.iloc[-1]["MSE"], 1e-4) | |
def test_multiprocessing(self): | |
y = self.X[:, 0] | |
equations = pysr( | |
self.X, y, **self.default_test_kwargs, procs=2, multithreading=False | |
) | |
print(equations) | |
self.assertLessEqual(equations.iloc[-1]["MSE"], 1e-4) | |
def test_multioutput_custom_operator(self): | |
y = self.X[:, [0, 1]] ** 2 | |
equations = pysr( | |
self.X, | |
y, | |
unary_operators=["sq(x) = x^2"], | |
binary_operators=["plus"], | |
extra_sympy_mappings={"sq": lambda x: x ** 2}, | |
**self.default_test_kwargs, | |
procs=0, | |
) | |
print(equations) | |
self.assertLessEqual(equations[0].iloc[-1]["MSE"], 1e-4) | |
self.assertLessEqual(equations[1].iloc[-1]["MSE"], 1e-4) | |
def test_multioutput_weighted_with_callable_temp_equation(self): | |
y = self.X[:, [0, 1]] ** 2 | |
w = np.random.rand(*y.shape) | |
w[w < 0.5] = 0.0 | |
w[w >= 0.5] = 1.0 | |
# Double equation when weights are 0: | |
y = (2 - w) * y | |
# Thus, pysr needs to use the weights to find the right equation! | |
pysr( | |
self.X, | |
y, | |
weights=w, | |
unary_operators=["sq(x) = x^2"], | |
binary_operators=["plus"], | |
extra_sympy_mappings={"sq": lambda x: x ** 2}, | |
**self.default_test_kwargs, | |
procs=0, | |
temp_equation_file=True, | |
delete_tempfiles=False, | |
) | |
np.testing.assert_almost_equal( | |
best_callable()[0](self.X), self.X[:, 0] ** 2, decimal=4 | |
) | |
np.testing.assert_almost_equal( | |
best_callable()[1](self.X), self.X[:, 1] ** 2, decimal=4 | |
) | |
def test_empty_operators_single_input_sklearn(self): | |
X = np.random.randn(100, 1) | |
y = X[:, 0] + 3.0 | |
regressor = PySRRegressor( | |
model_selection="accuracy", | |
unary_operators=[], | |
binary_operators=["plus"], | |
**self.default_test_kwargs, | |
) | |
regressor.fit(X, y) | |
self.assertLessEqual(regressor.equations.iloc[-1]["MSE"], 1e-4) | |
np.testing.assert_almost_equal(regressor.predict(X), y, decimal=1) | |
def test_noisy(self): | |
np.random.seed(1) | |
y = self.X[:, [0, 1]] ** 2 + np.random.randn(self.X.shape[0], 1) * 0.05 | |
equations = pysr( | |
self.X, | |
y, | |
# Test that passing a single operator works: | |
unary_operators="sq(x) = x^2", | |
binary_operators="plus", | |
extra_sympy_mappings={"sq": lambda x: x ** 2}, | |
**self.default_test_kwargs, | |
procs=0, | |
denoise=True, | |
) | |
self.assertLessEqual(best_row(equations=equations)[0]["MSE"], 1e-2) | |
self.assertLessEqual(best_row(equations=equations)[1]["MSE"], 1e-2) | |
def test_pandas_resample(self): | |
np.random.seed(1) | |
X = pd.DataFrame( | |
{ | |
"T": np.random.randn(500), | |
"x": np.random.randn(500), | |
"unused_feature": np.random.randn(500), | |
} | |
) | |
true_fn = lambda x: np.array(x["T"] + x["x"] ** 2 + 1.323837) | |
y = true_fn(X) | |
noise = np.random.randn(500) * 0.01 | |
y = y + noise | |
# Resampled array is a different order of features: | |
Xresampled = pd.DataFrame( | |
{ | |
"unused_feature": np.random.randn(100), | |
"x": np.random.randn(100), | |
"T": np.random.randn(100), | |
} | |
) | |
equations = pysr( | |
X, | |
y, | |
unary_operators=[], | |
binary_operators=["+", "*", "/", "-"], | |
**self.default_test_kwargs, | |
Xresampled=Xresampled, | |
denoise=True, | |
select_k_features=2, | |
) | |
self.assertNotIn("unused_feature", best_tex()) | |
self.assertIn("T", best_tex()) | |
self.assertIn("x", best_tex()) | |
self.assertLessEqual(equations.iloc[-1]["MSE"], 1e-2) | |
fn = best_callable() | |
self.assertListEqual(list(sorted(fn._selection)), [0, 1]) | |
X2 = pd.DataFrame( | |
{ | |
"T": np.random.randn(100), | |
"unused_feature": np.random.randn(100), | |
"x": np.random.randn(100), | |
} | |
) | |
self.assertLess(np.average((fn(X2) - true_fn(X2)) ** 2), 1e-2) | |
class TestBest(unittest.TestCase): | |
def setUp(self): | |
equations = pd.DataFrame( | |
{ | |
"Equation": ["1.0", "cos(x0)", "square(cos(x0))"], | |
"MSE": [1.0, 0.1, 1e-5], | |
"Complexity": [1, 2, 3], | |
} | |
) | |
equations["Complexity MSE Equation".split(" ")].to_csv( | |
"equation_file.csv.bkup", sep="|" | |
) | |
self.equations = get_hof( | |
"equation_file.csv", | |
n_features=2, | |
variables_names="x0 x1".split(" "), | |
extra_sympy_mappings={}, | |
output_jax_format=False, | |
multioutput=False, | |
nout=1, | |
) | |
def test_best(self): | |
self.assertEqual(best(self.equations), sympy.cos(sympy.Symbol("x0")) ** 2) | |
self.assertEqual(best(), sympy.cos(sympy.Symbol("x0")) ** 2) | |
def test_best_tex(self): | |
self.assertEqual(best_tex(self.equations), "\\cos^{2}{\\left(x_{0} \\right)}") | |
self.assertEqual(best_tex(), "\\cos^{2}{\\left(x_{0} \\right)}") | |
def test_best_lambda(self): | |
X = np.random.randn(10, 2) | |
y = np.cos(X[:, 0]) ** 2 | |
for f in [best_callable(), best_callable(self.equations)]: | |
np.testing.assert_almost_equal(f(X), y, decimal=4) | |
class TestFeatureSelection(unittest.TestCase): | |
def setUp(self): | |
np.random.seed(0) | |
def test_feature_selection(self): | |
X = np.random.randn(20000, 5) | |
y = X[:, 2] ** 2 + X[:, 3] ** 2 | |
selected = run_feature_selection(X, y, select_k_features=2) | |
self.assertEqual(sorted(selected), [2, 3]) | |
def test_feature_selection_handler(self): | |
X = np.random.randn(20000, 5) | |
y = X[:, 2] ** 2 + X[:, 3] ** 2 | |
var_names = [f"x{i}" for i in range(5)] | |
selected_X, selection = _handle_feature_selection( | |
X, | |
select_k_features=2, | |
variable_names=var_names, | |
y=y, | |
) | |
self.assertTrue((2 in selection) and (3 in selection)) | |
selected_var_names = [var_names[i] for i in selection] | |
self.assertEqual(set(selected_var_names), set("x2 x3".split(" "))) | |
np.testing.assert_array_equal( | |
np.sort(selected_X, axis=1), np.sort(X[:, [2, 3]], axis=1) | |
) | |
class TestHelperFunctions(unittest.TestCase): | |
def test_yesno(self, mock_input): | |
# Assert that the yes/no function correctly deals with y/n | |
self.assertEqual(_yesno("Test"), True) | |
self.assertEqual(_yesno("Test"), False) | |