Spaces:
Sleeping
Sleeping
"""Various functions to deprecate features.""" | |
import warnings | |
from .julia_import import jl | |
def install(*args, **kwargs): | |
del args, kwargs | |
warnings.warn( | |
"The `install` function has been removed. " | |
"PySR now uses the `juliacall` package to install its dependencies automatically at import time. ", | |
FutureWarning, | |
) | |
def init_julia(*args, **kwargs): | |
del args, kwargs | |
warnings.warn( | |
"The `init_julia` function has been removed. " | |
"Julia is now initialized automatically at import time.", | |
FutureWarning, | |
) | |
return jl | |
def pysr(X, y, weights=None, **kwargs): # pragma: no cover | |
from .sr import PySRRegressor | |
warnings.warn( | |
"Calling `pysr` is deprecated. " | |
"Please use `model = PySRRegressor(**params); " | |
"model.fit(X, y)` going forward.", | |
FutureWarning, | |
) | |
model = PySRRegressor(**kwargs) | |
model.fit(X, y, weights=weights) | |
return model.equations_ | |
def best(*args, **kwargs): # pragma: no cover | |
raise NotImplementedError( | |
"`best` has been deprecated. " | |
"Please use the `PySRRegressor` interface. " | |
"After fitting, you can return `.sympy()` " | |
"to get the sympy representation " | |
"of the best equation." | |
) | |
def best_row(*args, **kwargs): # pragma: no cover | |
raise NotImplementedError( | |
"`best_row` has been deprecated. " | |
"Please use the `PySRRegressor` interface. " | |
"After fitting, you can run `print(model)` to view the best equation, " | |
"or " | |
"`model.get_best()` to return the best equation's " | |
"row in `model.equations_`." | |
) | |
def best_tex(*args, **kwargs): # pragma: no cover | |
raise NotImplementedError( | |
"`best_tex` has been deprecated. " | |
"Please use the `PySRRegressor` interface. " | |
"After fitting, you can return `.latex()` to " | |
"get the sympy representation " | |
"of the best equation." | |
) | |
def best_callable(*args, **kwargs): # pragma: no cover | |
raise NotImplementedError( | |
"`best_callable` has been deprecated. Please use the `PySRRegressor` " | |
"interface. After fitting, you can use " | |
"`.predict(X)` to use the best callable." | |
) | |
DEPRECATED_KWARGS = { | |
"fractionReplaced": "fraction_replaced", | |
"fractionReplacedHof": "fraction_replaced_hof", | |
"npop": "population_size", | |
"hofMigration": "hof_migration", | |
"shouldOptimizeConstants": "should_optimize_constants", | |
"weightAddNode": "weight_add_node", | |
"weightDeleteNode": "weight_delete_node", | |
"weightDoNothing": "weight_do_nothing", | |
"weightInsertNode": "weight_insert_node", | |
"weightMutateConstant": "weight_mutate_constant", | |
"weightMutateOperator": "weight_mutate_operator", | |
"weightSwapOperands": "weight_swap_operands", | |
"weightRandomize": "weight_randomize", | |
"weightSimplify": "weight_simplify", | |
"crossoverProbability": "crossover_probability", | |
"perturbationFactor": "perturbation_factor", | |
"batchSize": "batch_size", | |
"warmupMaxsizeBy": "warmup_maxsize_by", | |
"useFrequency": "use_frequency", | |
"useFrequencyInTournament": "use_frequency_in_tournament", | |
"ncyclesperiteration": "ncycles_per_iteration", | |
"loss": "elementwise_loss", | |
"full_objective": "loss_function", | |
} | |