Spaces:
Sleeping
Sleeping
import difflib | |
import inspect | |
import os | |
import re | |
from pathlib import Path | |
from typing import Any, List, TypeVar, Union | |
from numpy import ndarray | |
from sklearn.utils.validation import _check_feature_names_in # type: ignore | |
T = TypeVar("T", bound=Any) | |
ArrayLike = Union[ndarray, List[T]] | |
PathLike = Union[str, Path] | |
def _csv_filename_to_pkl_filename(csv_filename: PathLike) -> PathLike: | |
if os.path.splitext(csv_filename)[1] == ".pkl": | |
return csv_filename | |
# Assume that the csv filename is of the form "foo.csv" | |
assert str(csv_filename).endswith(".csv") | |
dirname = str(os.path.dirname(csv_filename)) | |
basename = str(os.path.basename(csv_filename)) | |
base = str(os.path.splitext(basename)[0]) | |
pkl_basename = base + ".pkl" | |
return os.path.join(dirname, pkl_basename) | |
_regexp_im = re.compile(r"\b(\d+\.\d+)im\b") | |
_regexp_im_sci = re.compile(r"\b(\d+\.\d+)[eEfF]([+-]?\d+)im\b") | |
_regexp_sci = re.compile(r"\b(\d+\.\d+)[eEfF]([+-]?\d+)\b") | |
_apply_regexp_im = lambda x: _regexp_im.sub(r"\1j", x) | |
_apply_regexp_im_sci = lambda x: _regexp_im_sci.sub(r"\1e\2j", x) | |
_apply_regexp_sci = lambda x: _regexp_sci.sub(r"\1e\2", x) | |
def _preprocess_julia_floats(s: str) -> str: | |
if isinstance(s, str): | |
s = _apply_regexp_im(s) | |
s = _apply_regexp_im_sci(s) | |
s = _apply_regexp_sci(s) | |
return s | |
def _safe_check_feature_names_in(self, variable_names, generate_names=True): | |
"""_check_feature_names_in with compat for old versions.""" | |
try: | |
return _check_feature_names_in( | |
self, variable_names, generate_names=generate_names | |
) | |
except TypeError: | |
return _check_feature_names_in(self, variable_names) | |
def _subscriptify(i: int) -> str: | |
"""Converts integer to subscript text form. | |
For example, 123 -> "βββ". | |
""" | |
return "".join([chr(0x2080 + int(c)) for c in str(i)]) | |
def _suggest_keywords(cls, k: str) -> List[str]: | |
valid_keywords = [ | |
param | |
for param in inspect.signature(cls.__init__).parameters | |
if param not in ["self", "kwargs"] | |
] | |
suggestions = difflib.get_close_matches(k, valid_keywords, n=3) | |
return suggestions | |