Spaces:
Running
Running
MilesCranmer
commited on
style: absolute import in test files for test compat
Browse files- pysr/sr.py +1 -1
- pysr/test/params.py +1 -1
- pysr/test/test.py +13 -9
- pysr/test/test_jax.py +5 -2
- pysr/test/test_startup.py +3 -2
- pysr/test/test_torch.py +1 -1
pysr/sr.py
CHANGED
@@ -120,7 +120,7 @@ def _maybe_create_inline_operators(
|
|
120 |
"and underscores are allowed."
|
121 |
)
|
122 |
if (extra_sympy_mappings is None) or (
|
123 |
-
not
|
124 |
):
|
125 |
raise ValueError(
|
126 |
f"Custom function {function_name} is not defined in `extra_sympy_mappings`. "
|
|
|
120 |
"and underscores are allowed."
|
121 |
)
|
122 |
if (extra_sympy_mappings is None) or (
|
123 |
+
function_name not in extra_sympy_mappings
|
124 |
):
|
125 |
raise ValueError(
|
126 |
f"Custom function {function_name} is not defined in `extra_sympy_mappings`. "
|
pysr/test/params.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import inspect
|
2 |
|
3 |
-
from
|
4 |
|
5 |
DEFAULT_PARAMS = inspect.signature(PySRRegressor.__init__).parameters
|
6 |
DEFAULT_NITERATIONS = DEFAULT_PARAMS["niterations"].default
|
|
|
1 |
import inspect
|
2 |
|
3 |
+
from pysr import PySRRegressor
|
4 |
|
5 |
DEFAULT_PARAMS = inspect.signature(PySRRegressor.__init__).parameters
|
6 |
DEFAULT_NITERATIONS = DEFAULT_PARAMS["niterations"].default
|
pysr/test/test.py
CHANGED
@@ -11,12 +11,13 @@ import pandas as pd
|
|
11 |
import sympy
|
12 |
from sklearn.utils.estimator_checks import check_estimator
|
13 |
|
14 |
-
from
|
15 |
-
from
|
16 |
-
from
|
17 |
-
from
|
18 |
-
from
|
19 |
-
from
|
|
|
20 |
from .params import (
|
21 |
DEFAULT_NCYCLES,
|
22 |
DEFAULT_NITERATIONS,
|
@@ -308,7 +309,10 @@ class TestPipeline(unittest.TestCase):
|
|
308 |
"unused_feature": self.rstate.randn(500),
|
309 |
}
|
310 |
)
|
311 |
-
|
|
|
|
|
|
|
312 |
y = true_fn(X)
|
313 |
noise = self.rstate.randn(500) * 0.01
|
314 |
y = y + noise
|
@@ -373,7 +377,7 @@ class TestPipeline(unittest.TestCase):
|
|
373 |
3,0.12717344,"(f0 + 1.4724599)"
|
374 |
4,0.104823045,"pow_abs(2.2683423, cos(f3))\""""
|
375 |
# Strip the indents:
|
376 |
-
csv_file_data = "\n".join([
|
377 |
|
378 |
for from_backup in [False, True]:
|
379 |
rand_dir = Path(tempfile.mkdtemp())
|
@@ -425,7 +429,7 @@ class TestPipeline(unittest.TestCase):
|
|
425 |
if os.path.exists(file_to_delete):
|
426 |
os.remove(file_to_delete)
|
427 |
|
428 |
-
pickle_file = rand_dir / "equations.pkl"
|
429 |
model3 = PySRRegressor.from_file(
|
430 |
model.equation_file_, extra_sympy_mappings={"sq": lambda x: x**2}
|
431 |
)
|
|
|
11 |
import sympy
|
12 |
from sklearn.utils.estimator_checks import check_estimator
|
13 |
|
14 |
+
from pysr import PySRRegressor, install, jl
|
15 |
+
from pysr.export_latex import sympy2latex
|
16 |
+
from pysr.feature_selection import _handle_feature_selection, run_feature_selection
|
17 |
+
from pysr.julia_helpers import init_julia
|
18 |
+
from pysr.sr import _check_assertions, _process_constraints, idx_model_selection
|
19 |
+
from pysr.utils import _csv_filename_to_pkl_filename
|
20 |
+
|
21 |
from .params import (
|
22 |
DEFAULT_NCYCLES,
|
23 |
DEFAULT_NITERATIONS,
|
|
|
309 |
"unused_feature": self.rstate.randn(500),
|
310 |
}
|
311 |
)
|
312 |
+
|
313 |
+
def true_fn(x):
|
314 |
+
return np.array(x["T"] + x["x"] ** 2 + 1.323837)
|
315 |
+
|
316 |
y = true_fn(X)
|
317 |
noise = self.rstate.randn(500) * 0.01
|
318 |
y = y + noise
|
|
|
377 |
3,0.12717344,"(f0 + 1.4724599)"
|
378 |
4,0.104823045,"pow_abs(2.2683423, cos(f3))\""""
|
379 |
# Strip the indents:
|
380 |
+
csv_file_data = "\n".join([line.strip() for line in csv_file_data.split("\n")])
|
381 |
|
382 |
for from_backup in [False, True]:
|
383 |
rand_dir = Path(tempfile.mkdtemp())
|
|
|
429 |
if os.path.exists(file_to_delete):
|
430 |
os.remove(file_to_delete)
|
431 |
|
432 |
+
# pickle_file = rand_dir / "equations.pkl"
|
433 |
model3 = PySRRegressor.from_file(
|
434 |
model.equation_file_, extra_sympy_mappings={"sq": lambda x: x**2}
|
435 |
)
|
pysr/test/test_jax.py
CHANGED
@@ -5,7 +5,7 @@ import numpy as np
|
|
5 |
import pandas as pd
|
6 |
import sympy
|
7 |
|
8 |
-
from
|
9 |
|
10 |
|
11 |
class TestJAX(unittest.TestCase):
|
@@ -89,7 +89,10 @@ class TestJAX(unittest.TestCase):
|
|
89 |
def test_feature_selection_custom_operators(self):
|
90 |
rstate = np.random.RandomState(0)
|
91 |
X = pd.DataFrame({f"k{i}": rstate.randn(2000) for i in range(10, 21)})
|
92 |
-
|
|
|
|
|
|
|
93 |
y = X["k15"] ** 2 + 2 * cos_approx(X["k20"])
|
94 |
|
95 |
model = PySRRegressor(
|
|
|
5 |
import pandas as pd
|
6 |
import sympy
|
7 |
|
8 |
+
from pysr import PySRRegressor, sympy2jax
|
9 |
|
10 |
|
11 |
class TestJAX(unittest.TestCase):
|
|
|
89 |
def test_feature_selection_custom_operators(self):
|
90 |
rstate = np.random.RandomState(0)
|
91 |
X = pd.DataFrame({f"k{i}": rstate.randn(2000) for i in range(10, 21)})
|
92 |
+
|
93 |
+
def cos_approx(x):
|
94 |
+
return 1 - (x**2) / 2 + (x**4) / 24 + (x**6) / 720
|
95 |
+
|
96 |
y = X["k15"] ** 2 + 2 * cos_approx(X["k20"])
|
97 |
|
98 |
model = PySRRegressor(
|
pysr/test/test_startup.py
CHANGED
@@ -9,8 +9,9 @@ from pathlib import Path
|
|
9 |
|
10 |
import numpy as np
|
11 |
|
12 |
-
from
|
13 |
-
from
|
|
|
14 |
from .params import DEFAULT_NITERATIONS, DEFAULT_POPULATIONS
|
15 |
|
16 |
|
|
|
9 |
|
10 |
import numpy as np
|
11 |
|
12 |
+
from pysr import PySRRegressor
|
13 |
+
from pysr.julia_import import jl_version
|
14 |
+
|
15 |
from .params import DEFAULT_NITERATIONS, DEFAULT_POPULATIONS
|
16 |
|
17 |
|
pysr/test/test_torch.py
CHANGED
@@ -4,7 +4,7 @@ import numpy as np
|
|
4 |
import pandas as pd
|
5 |
import sympy
|
6 |
|
7 |
-
from
|
8 |
|
9 |
|
10 |
class TestTorch(unittest.TestCase):
|
|
|
4 |
import pandas as pd
|
5 |
import sympy
|
6 |
|
7 |
+
from pysr import PySRRegressor, sympy2torch
|
8 |
|
9 |
|
10 |
class TestTorch(unittest.TestCase):
|