Spaces:
Sleeping
Sleeping
MilesCranmer
commited on
Commit
•
0a3d3e9
1
Parent(s):
03ba6dc
Fix hyperparameter optimization script
Browse files- benchmarks/hyperparamopt.py +135 -49
benchmarks/hyperparamopt.py
CHANGED
@@ -5,22 +5,25 @@ import pickle as pkl
|
|
5 |
from pysr import PySRRegressor
|
6 |
import hyperopt
|
7 |
from hyperopt import hp, fmin, tpe, Trials
|
|
|
8 |
|
9 |
# Change the following code to your file
|
10 |
################################################################################
|
11 |
TRIALS_FOLDER = "trials"
|
12 |
NUMBER_TRIALS_PER_RUN = 1
|
13 |
-
|
14 |
|
15 |
# Test run to compile everything:
|
16 |
binary_operators = ["*", "/", "+", "-"]
|
17 |
unary_operators = ["sin", "cos", "exp", "log"]
|
18 |
julia_project = None
|
|
|
19 |
model = PySRRegressor(
|
20 |
binary_operators=binary_operators,
|
21 |
unary_operators=unary_operators,
|
22 |
timeout_in_seconds=30,
|
23 |
julia_project=julia_project,
|
|
|
24 |
)
|
25 |
model.fit(np.random.randn(100, 3), np.random.randn(100))
|
26 |
|
@@ -56,40 +59,54 @@ def run_trial(args):
|
|
56 |
if invalid:
|
57 |
return dict(status="fail", loss=float("inf"))
|
58 |
|
59 |
-
args["timeout_in_seconds"] =
|
60 |
args["julia_project"] = julia_project
|
61 |
-
args["procs"] =
|
|
|
|
|
62 |
|
63 |
# Create the dataset:
|
64 |
-
|
65 |
-
|
66 |
-
y = np.cos(2.3 * X[:, 0]) * np.sin(2.3 * X[:, 0] * X[:, 1] * X[:, 2])
|
67 |
|
68 |
# Old datasets:
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
|
83 |
-
|
|
|
84 |
|
85 |
-
|
86 |
-
cur_loss = float(model.get_best()["loss"])
|
87 |
-
losses.append(cur_loss)
|
88 |
|
89 |
-
loss = np.
|
90 |
print(f"Finished with {loss}", str(args))
|
91 |
|
92 |
-
return
|
93 |
|
94 |
|
95 |
space = dict(
|
@@ -163,6 +180,61 @@ space = dict(
|
|
163 |
tournament_selection_p=hp.uniform("tournament_selection_p", 0.0, 1.0),
|
164 |
)
|
165 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
################################################################################
|
167 |
|
168 |
|
@@ -195,7 +267,10 @@ def merge_trials(trials1, trials2_slice):
|
|
195 |
|
196 |
|
197 |
loaded_fnames = []
|
198 |
-
trials =
|
|
|
|
|
|
|
199 |
# Run new hyperparameter trials until killed
|
200 |
while True:
|
201 |
np.random.seed()
|
@@ -203,39 +278,48 @@ while True:
|
|
203 |
# Load up all runs:
|
204 |
import glob
|
205 |
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
trials_obj = pkl.load(open(fname, "rb"))
|
212 |
-
n_trials = trials_obj["n"]
|
213 |
-
trials_obj = trials_obj["trials"]
|
214 |
-
if len(loaded_fnames) == 0:
|
215 |
-
trials = trials_obj
|
216 |
-
else:
|
217 |
-
print("Merging trials")
|
218 |
-
trials = merge_trials(trials, trials_obj.trials[-n_trials:])
|
219 |
|
220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
|
222 |
-
|
223 |
-
if len(loaded_fnames) == 0:
|
224 |
-
trials = Trials()
|
225 |
|
226 |
-
|
227 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
best = fmin(
|
229 |
run_trial,
|
230 |
space=space,
|
231 |
algo=tpe.suggest,
|
232 |
-
max_evals=
|
233 |
trials=trials,
|
234 |
-
|
235 |
-
rstate=np.random.default_rng(np.random.randint(1, 10**6)),
|
236 |
)
|
237 |
-
except hyperopt.exceptions.AllTrialsFailed:
|
238 |
-
continue
|
239 |
|
240 |
print("current best", best)
|
241 |
hyperopt_trial = Trials()
|
@@ -245,3 +329,5 @@ while True:
|
|
245 |
new_fname = TRIALS_FOLDER + "/" + str(np.random.randint(0, sys.maxsize)) + ".pkl"
|
246 |
pkl.dump({"trials": save_trials, "n": n}, open(new_fname, "wb"))
|
247 |
loaded_fnames.append(new_fname)
|
|
|
|
|
|
5 |
from pysr import PySRRegressor
|
6 |
import hyperopt
|
7 |
from hyperopt import hp, fmin, tpe, Trials
|
8 |
+
from hyperopt.fmin import generate_trials_to_calculate
|
9 |
|
10 |
# Change the following code to your file
|
11 |
################################################################################
|
12 |
TRIALS_FOLDER = "trials"
|
13 |
NUMBER_TRIALS_PER_RUN = 1
|
14 |
+
timeout_in_minutes = 5
|
15 |
|
16 |
# Test run to compile everything:
|
17 |
binary_operators = ["*", "/", "+", "-"]
|
18 |
unary_operators = ["sin", "cos", "exp", "log"]
|
19 |
julia_project = None
|
20 |
+
procs = 4
|
21 |
model = PySRRegressor(
|
22 |
binary_operators=binary_operators,
|
23 |
unary_operators=unary_operators,
|
24 |
timeout_in_seconds=30,
|
25 |
julia_project=julia_project,
|
26 |
+
procs=procs,
|
27 |
)
|
28 |
model.fit(np.random.randn(100, 3), np.random.randn(100))
|
29 |
|
|
|
59 |
if invalid:
|
60 |
return dict(status="fail", loss=float("inf"))
|
61 |
|
62 |
+
args["timeout_in_seconds"] = timeout_in_minutes * 60
|
63 |
args["julia_project"] = julia_project
|
64 |
+
args["procs"] = procs
|
65 |
+
|
66 |
+
print(f"Running trial with args: {args}")
|
67 |
|
68 |
# Create the dataset:
|
69 |
+
ntrials = 3
|
70 |
+
losses = []
|
|
|
71 |
|
72 |
# Old datasets:
|
73 |
+
eval_str = [
|
74 |
+
"np.cos(2.3 * X[:, 0]) * np.sin(2.3 * X[:, 0] * X[:, 1] * X[:, 2]) - 10.0",
|
75 |
+
"(np.exp(X[:, 3]*0.3) + 3)/(np.exp(X[:, 1]*0.2) + np.cos(X[:, 0]) + 1.1)",
|
76 |
+
# "np.sign(X[:, 2])*np.abs(X[:, 2])**2.5 + 5*np.cos(X[:, 3]) - 5",
|
77 |
+
# "np.exp(X[:, 0]/2) + 12.0 + np.log(np.abs(X[:, 0])*10 + 1)",
|
78 |
+
# "X[:, 0] * np.sin(2*np.pi * (X[:, 1] * X[:, 2] - X[:, 3] / X[:, 4])) + 3.0",
|
79 |
+
]
|
80 |
|
81 |
+
for expression in eval_str:
|
82 |
+
expression_losses = []
|
83 |
+
for i in range(ntrials):
|
84 |
+
rstate = np.random.RandomState(i)
|
85 |
+
X = 3 * rstate.randn(200, 5)
|
86 |
+
y = eval(expression)
|
87 |
+
|
88 |
+
# Normalize y so that losses are fair:
|
89 |
+
y = (y - np.average(y)) / np.std(y)
|
90 |
+
|
91 |
+
# Create the model:
|
92 |
+
model = PySRRegressor(**args)
|
93 |
+
|
94 |
+
# Run the model:
|
95 |
+
try:
|
96 |
+
model.fit(X, y)
|
97 |
+
except RuntimeError:
|
98 |
+
return dict(status="fail", loss=float("inf"))
|
99 |
|
100 |
+
# Compute loss:
|
101 |
+
cur_loss = float(model.get_best()["loss"])
|
102 |
+
expression_losses.append(cur_loss)
|
103 |
|
104 |
+
losses.append(np.median(expression_losses))
|
|
|
|
|
105 |
|
106 |
+
loss = np.average(losses)
|
107 |
print(f"Finished with {loss}", str(args))
|
108 |
|
109 |
+
return dict(status="ok", loss=loss)
|
110 |
|
111 |
|
112 |
space = dict(
|
|
|
180 |
tournament_selection_p=hp.uniform("tournament_selection_p", 0.0, 1.0),
|
181 |
)
|
182 |
|
183 |
+
init_vals = [
|
184 |
+
dict(
|
185 |
+
model_selection=0, # 0 means first choice
|
186 |
+
binary_operators=0,
|
187 |
+
unary_operators=0,
|
188 |
+
populations=100.0,
|
189 |
+
niterations=0,
|
190 |
+
ncyclesperiteration=100.0,
|
191 |
+
alpha=0.1,
|
192 |
+
annealing=0,
|
193 |
+
# fractionReplaced=0.01,
|
194 |
+
fractionReplaced=0.01,
|
195 |
+
# fractionReplacedHof=0.005,
|
196 |
+
fractionReplacedHof=0.005,
|
197 |
+
# npop=100,
|
198 |
+
npop=100.0,
|
199 |
+
# parsimony=1e-4,
|
200 |
+
parsimony=1e-4,
|
201 |
+
# topn=10,
|
202 |
+
topn=10.0,
|
203 |
+
# weightAddNode=1,
|
204 |
+
weightAddNode=1.0,
|
205 |
+
# weightInsertNode=3,
|
206 |
+
weightInsertNode=3.0,
|
207 |
+
# weightDeleteNode=3,
|
208 |
+
weightDeleteNode=3.0,
|
209 |
+
# weightDoNothing=1,
|
210 |
+
weightDoNothing=1.0,
|
211 |
+
# weightMutateConstant=10,
|
212 |
+
weightMutateConstant=10.0,
|
213 |
+
# weightMutateOperator=1,
|
214 |
+
weightMutateOperator=1.0,
|
215 |
+
# weightRandomize=1,
|
216 |
+
weightRandomize=1.0,
|
217 |
+
# weightSimplify=0.002,
|
218 |
+
weightSimplify=0, # One of these is fixed.
|
219 |
+
# perturbationFactor=1.0,
|
220 |
+
perturbationFactor=1.0,
|
221 |
+
# maxsize=20,
|
222 |
+
maxsize=0,
|
223 |
+
# warmupMaxsizeBy=0.0,
|
224 |
+
warmupMaxsizeBy=0.0,
|
225 |
+
# useFrequency=True,
|
226 |
+
useFrequency=1,
|
227 |
+
# optimizer_nrestarts=3,
|
228 |
+
optimizer_nrestarts=3.0,
|
229 |
+
# optimize_probability=1.0,
|
230 |
+
optimize_probability=1.0,
|
231 |
+
# optimizer_iterations=10,
|
232 |
+
optimizer_iterations=10.0,
|
233 |
+
# tournament_selection_p=1.0,
|
234 |
+
tournament_selection_p=0.999,
|
235 |
+
)
|
236 |
+
]
|
237 |
+
|
238 |
################################################################################
|
239 |
|
240 |
|
|
|
267 |
|
268 |
|
269 |
loaded_fnames = []
|
270 |
+
trials = generate_trials_to_calculate(init_vals)
|
271 |
+
i = 0
|
272 |
+
n = NUMBER_TRIALS_PER_RUN
|
273 |
+
|
274 |
# Run new hyperparameter trials until killed
|
275 |
while True:
|
276 |
np.random.seed()
|
|
|
278 |
# Load up all runs:
|
279 |
import glob
|
280 |
|
281 |
+
if i > 0:
|
282 |
+
path = TRIALS_FOLDER + "/*.pkl"
|
283 |
+
for fname in glob.glob(path):
|
284 |
+
if fname in loaded_fnames:
|
285 |
+
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
|
287 |
+
trials_obj = pkl.load(open(fname, "rb"))
|
288 |
+
n_trials = trials_obj["n"]
|
289 |
+
trials_obj = trials_obj["trials"]
|
290 |
+
if len(loaded_fnames) == 0:
|
291 |
+
trials = trials_obj
|
292 |
+
else:
|
293 |
+
print("Merging trials")
|
294 |
+
trials = merge_trials(trials, trials_obj.trials[-n_trials:])
|
295 |
|
296 |
+
loaded_fnames.append(fname)
|
|
|
|
|
297 |
|
298 |
+
print("Loaded trials", len(loaded_fnames))
|
299 |
+
if len(loaded_fnames) == 0:
|
300 |
+
trials = Trials()
|
301 |
+
|
302 |
+
try:
|
303 |
+
best = fmin(
|
304 |
+
run_trial,
|
305 |
+
space=space,
|
306 |
+
algo=tpe.suggest,
|
307 |
+
max_evals=n + len(trials.trials),
|
308 |
+
trials=trials,
|
309 |
+
verbose=1,
|
310 |
+
rstate=np.random.default_rng(np.random.randint(1, 10**6)),
|
311 |
+
)
|
312 |
+
except hyperopt.exceptions.AllTrialsFailed:
|
313 |
+
continue
|
314 |
+
else:
|
315 |
best = fmin(
|
316 |
run_trial,
|
317 |
space=space,
|
318 |
algo=tpe.suggest,
|
319 |
+
max_evals=2,
|
320 |
trials=trials,
|
321 |
+
points_to_evaluate=init_vals,
|
|
|
322 |
)
|
|
|
|
|
323 |
|
324 |
print("current best", best)
|
325 |
hyperopt_trial = Trials()
|
|
|
329 |
new_fname = TRIALS_FOLDER + "/" + str(np.random.randint(0, sys.maxsize)) + ".pkl"
|
330 |
pkl.dump({"trials": save_trials, "n": n}, open(new_fname, "wb"))
|
331 |
loaded_fnames.append(new_fname)
|
332 |
+
|
333 |
+
i += 1
|