Spaces:
Sleeping
Sleeping
MilesCranmer
commited on
Merge pull request #156 from MilesCranmer/latex-table
Browse files- pysr/export_latex.py +153 -0
- pysr/sr.py +65 -3
- test/test.py +234 -19
pysr/export_latex.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Functions to help export PySR equations to LaTeX."""
|
2 |
+
import sympy
|
3 |
+
from sympy.printing.latex import LatexPrinter
|
4 |
+
import pandas as pd
|
5 |
+
from typing import List
|
6 |
+
import warnings
|
7 |
+
|
8 |
+
|
9 |
+
class PreciseLatexPrinter(LatexPrinter):
|
10 |
+
"""Modified SymPy printer with custom float precision."""
|
11 |
+
|
12 |
+
def __init__(self, settings=None, prec=3):
|
13 |
+
super().__init__(settings)
|
14 |
+
self.prec = prec
|
15 |
+
|
16 |
+
def _print_Float(self, expr):
|
17 |
+
# Reduce precision of float:
|
18 |
+
reduced_float = sympy.Float(expr, self.prec)
|
19 |
+
return super()._print_Float(reduced_float)
|
20 |
+
|
21 |
+
|
22 |
+
def to_latex(expr, prec=3, full_prec=True, **settings):
|
23 |
+
"""Convert sympy expression to LaTeX with custom precision."""
|
24 |
+
settings["full_prec"] = full_prec
|
25 |
+
printer = PreciseLatexPrinter(settings=settings, prec=prec)
|
26 |
+
return printer.doprint(expr)
|
27 |
+
|
28 |
+
|
29 |
+
def generate_table_environment(columns=["equation", "complexity", "loss"]):
|
30 |
+
margins = "c" * len(columns)
|
31 |
+
column_map = {
|
32 |
+
"complexity": "Complexity",
|
33 |
+
"loss": "Loss",
|
34 |
+
"equation": "Equation",
|
35 |
+
"score": "Score",
|
36 |
+
}
|
37 |
+
columns = [column_map[col] for col in columns]
|
38 |
+
top_pieces = [
|
39 |
+
r"\begin{table}[h]",
|
40 |
+
r"\begin{center}",
|
41 |
+
r"\begin{tabular}{@{}" + margins + r"@{}}",
|
42 |
+
r"\toprule",
|
43 |
+
" & ".join(columns) + r" \\",
|
44 |
+
r"\midrule",
|
45 |
+
]
|
46 |
+
|
47 |
+
bottom_pieces = [
|
48 |
+
r"\bottomrule",
|
49 |
+
r"\end{tabular}",
|
50 |
+
r"\end{center}",
|
51 |
+
r"\end{table}",
|
52 |
+
]
|
53 |
+
top_latex_table = "\n".join(top_pieces)
|
54 |
+
bottom_latex_table = "\n".join(bottom_pieces)
|
55 |
+
|
56 |
+
return top_latex_table, bottom_latex_table
|
57 |
+
|
58 |
+
|
59 |
+
def generate_single_table(
|
60 |
+
equations: pd.DataFrame,
|
61 |
+
indices: List[int] = None,
|
62 |
+
precision: int = 3,
|
63 |
+
columns=["equation", "complexity", "loss", "score"],
|
64 |
+
max_equation_length: int = 50,
|
65 |
+
output_variable_name: str = "y",
|
66 |
+
):
|
67 |
+
"""Generate a booktabs-style LaTeX table for a single set of equations."""
|
68 |
+
assert isinstance(equations, pd.DataFrame)
|
69 |
+
|
70 |
+
latex_top, latex_bottom = generate_table_environment(columns)
|
71 |
+
latex_table_content = []
|
72 |
+
|
73 |
+
if indices is None:
|
74 |
+
indices = range(len(equations))
|
75 |
+
|
76 |
+
for i in indices:
|
77 |
+
latex_equation = to_latex(
|
78 |
+
equations.iloc[i]["sympy_format"],
|
79 |
+
prec=precision,
|
80 |
+
)
|
81 |
+
complexity = str(equations.iloc[i]["complexity"])
|
82 |
+
loss = to_latex(
|
83 |
+
sympy.Float(equations.iloc[i]["loss"]),
|
84 |
+
prec=precision,
|
85 |
+
)
|
86 |
+
score = to_latex(
|
87 |
+
sympy.Float(equations.iloc[i]["score"]),
|
88 |
+
prec=precision,
|
89 |
+
)
|
90 |
+
|
91 |
+
row_pieces = []
|
92 |
+
for col in columns:
|
93 |
+
if col == "equation":
|
94 |
+
if len(latex_equation) < max_equation_length:
|
95 |
+
row_pieces.append(
|
96 |
+
"$" + output_variable_name + " = " + latex_equation + "$"
|
97 |
+
)
|
98 |
+
else:
|
99 |
+
|
100 |
+
broken_latex_equation = " ".join(
|
101 |
+
[
|
102 |
+
r"\begin{minipage}{0.8\linewidth}",
|
103 |
+
r"\vspace{-1em}",
|
104 |
+
r"\begin{dmath*}",
|
105 |
+
output_variable_name + " = " + latex_equation,
|
106 |
+
r"\end{dmath*}",
|
107 |
+
r"\end{minipage}",
|
108 |
+
]
|
109 |
+
)
|
110 |
+
row_pieces.append(broken_latex_equation)
|
111 |
+
|
112 |
+
elif col == "complexity":
|
113 |
+
row_pieces.append("$" + complexity + "$")
|
114 |
+
elif col == "loss":
|
115 |
+
row_pieces.append("$" + loss + "$")
|
116 |
+
elif col == "score":
|
117 |
+
row_pieces.append("$" + score + "$")
|
118 |
+
else:
|
119 |
+
raise ValueError(f"Unknown column: {col}")
|
120 |
+
|
121 |
+
latex_table_content.append(
|
122 |
+
" & ".join(row_pieces) + r" \\",
|
123 |
+
)
|
124 |
+
|
125 |
+
return "\n".join([latex_top, *latex_table_content, latex_bottom])
|
126 |
+
|
127 |
+
|
128 |
+
def generate_multiple_tables(
|
129 |
+
equations: List[pd.DataFrame],
|
130 |
+
indices: List[List[int]] = None,
|
131 |
+
precision: int = 3,
|
132 |
+
columns=["equation", "complexity", "loss", "score"],
|
133 |
+
output_variable_names: str = None,
|
134 |
+
):
|
135 |
+
"""Generate multiple latex tables for a list of equation sets."""
|
136 |
+
# TODO: Let user specify custom output variable
|
137 |
+
|
138 |
+
latex_tables = [
|
139 |
+
generate_single_table(
|
140 |
+
equations[i],
|
141 |
+
(None if not indices else indices[i]),
|
142 |
+
precision=precision,
|
143 |
+
columns=columns,
|
144 |
+
output_variable_name=(
|
145 |
+
"y_{" + str(i) + "}"
|
146 |
+
if output_variable_names is None
|
147 |
+
else output_variable_names[i]
|
148 |
+
),
|
149 |
+
)
|
150 |
+
for i in range(len(equations))
|
151 |
+
]
|
152 |
+
|
153 |
+
return "\n\n".join(latex_tables)
|
pysr/sr.py
CHANGED
@@ -29,6 +29,7 @@ from .julia_helpers import (
|
|
29 |
import_error_string,
|
30 |
)
|
31 |
from .export_numpy import CallableEquation
|
|
|
32 |
from .deprecated import make_deprecated_kwargs_for_pysr_regressor
|
33 |
|
34 |
|
@@ -1875,7 +1876,7 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
|
|
1875 |
return [eq["sympy_format"] for eq in best_equation]
|
1876 |
return best_equation["sympy_format"]
|
1877 |
|
1878 |
-
def latex(self, index=None):
|
1879 |
"""
|
1880 |
Return latex representation of the equation(s) chosen by `model_selection`.
|
1881 |
|
@@ -1887,6 +1888,9 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
|
|
1887 |
the `model_selection` parameter. If there are multiple output
|
1888 |
features, then pass a list of indices with the order the same
|
1889 |
as the output feature.
|
|
|
|
|
|
|
1890 |
|
1891 |
Returns
|
1892 |
-------
|
@@ -1896,8 +1900,12 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
|
|
1896 |
self.refresh()
|
1897 |
sympy_representation = self.sympy(index=index)
|
1898 |
if self.nout_ > 1:
|
1899 |
-
|
1900 |
-
|
|
|
|
|
|
|
|
|
1901 |
|
1902 |
def jax(self, index=None):
|
1903 |
"""
|
@@ -2147,6 +2155,60 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
|
|
2147 |
return ret_outputs
|
2148 |
return ret_outputs[0]
|
2149 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2150 |
|
2151 |
def idx_model_selection(equations: pd.DataFrame, model_selection: str) -> int:
|
2152 |
"""
|
|
|
29 |
import_error_string,
|
30 |
)
|
31 |
from .export_numpy import CallableEquation
|
32 |
+
from .export_latex import generate_single_table, generate_multiple_tables, to_latex
|
33 |
from .deprecated import make_deprecated_kwargs_for_pysr_regressor
|
34 |
|
35 |
|
|
|
1876 |
return [eq["sympy_format"] for eq in best_equation]
|
1877 |
return best_equation["sympy_format"]
|
1878 |
|
1879 |
+
def latex(self, index=None, precision=3):
|
1880 |
"""
|
1881 |
Return latex representation of the equation(s) chosen by `model_selection`.
|
1882 |
|
|
|
1888 |
the `model_selection` parameter. If there are multiple output
|
1889 |
features, then pass a list of indices with the order the same
|
1890 |
as the output feature.
|
1891 |
+
precision : int, default=3
|
1892 |
+
The number of significant figures shown in the LaTeX
|
1893 |
+
representation.
|
1894 |
|
1895 |
Returns
|
1896 |
-------
|
|
|
1900 |
self.refresh()
|
1901 |
sympy_representation = self.sympy(index=index)
|
1902 |
if self.nout_ > 1:
|
1903 |
+
output = []
|
1904 |
+
for s in sympy_representation:
|
1905 |
+
latex = to_latex(s, prec=precision)
|
1906 |
+
output.append(latex)
|
1907 |
+
return output
|
1908 |
+
return to_latex(sympy_representation, prec=precision)
|
1909 |
|
1910 |
def jax(self, index=None):
|
1911 |
"""
|
|
|
2155 |
return ret_outputs
|
2156 |
return ret_outputs[0]
|
2157 |
|
2158 |
+
def latex_table(
|
2159 |
+
self,
|
2160 |
+
indices=None,
|
2161 |
+
precision=3,
|
2162 |
+
columns=["equation", "complexity", "loss", "score"],
|
2163 |
+
):
|
2164 |
+
"""Create a LaTeX/booktabs table for all, or some, of the equations.
|
2165 |
+
|
2166 |
+
Parameters
|
2167 |
+
----------
|
2168 |
+
indices : list[int] | list[list[int]], default=None
|
2169 |
+
If you wish to select a particular subset of equations from
|
2170 |
+
`self.equations_`, give the row numbers here. By default,
|
2171 |
+
all equations will be used. If there are multiple output
|
2172 |
+
features, then pass a list of lists.
|
2173 |
+
precision : int, default=3
|
2174 |
+
The number of significant figures shown in the LaTeX
|
2175 |
+
representations.
|
2176 |
+
columns : list[str], default=["equation", "complexity", "loss", "score"]
|
2177 |
+
Which columns to include in the table.
|
2178 |
+
|
2179 |
+
Returns
|
2180 |
+
-------
|
2181 |
+
latex_table_str : str
|
2182 |
+
A string that will render a table in LaTeX of the equations.
|
2183 |
+
"""
|
2184 |
+
self.refresh()
|
2185 |
+
|
2186 |
+
if self.nout_ > 1:
|
2187 |
+
if indices is not None:
|
2188 |
+
assert isinstance(indices, list)
|
2189 |
+
assert isinstance(indices[0], list)
|
2190 |
+
assert isinstance(len(indices), self.nout_)
|
2191 |
+
|
2192 |
+
generator_fnc = generate_multiple_tables
|
2193 |
+
else:
|
2194 |
+
if indices is not None:
|
2195 |
+
assert isinstance(indices, list)
|
2196 |
+
assert isinstance(indices[0], int)
|
2197 |
+
|
2198 |
+
generator_fnc = generate_single_table
|
2199 |
+
|
2200 |
+
table_string = generator_fnc(
|
2201 |
+
self.equations_, indices=indices, precision=precision, columns=columns
|
2202 |
+
)
|
2203 |
+
preamble_string = [
|
2204 |
+
r"\usepackage{breqn}",
|
2205 |
+
r"\usepackage{booktabs}",
|
2206 |
+
"",
|
2207 |
+
"...",
|
2208 |
+
"",
|
2209 |
+
]
|
2210 |
+
return "\n".join(preamble_string + [table_string])
|
2211 |
+
|
2212 |
|
2213 |
def idx_model_selection(equations: pd.DataFrame, model_selection: str) -> int:
|
2214 |
"""
|
test/test.py
CHANGED
@@ -11,6 +11,7 @@ from pysr.sr import (
|
|
11 |
_csv_filename_to_pkl_filename,
|
12 |
idx_model_selection,
|
13 |
)
|
|
|
14 |
from sklearn.utils.estimator_checks import check_estimator
|
15 |
import sympy
|
16 |
import pandas as pd
|
@@ -353,19 +354,49 @@ class TestPipeline(unittest.TestCase):
|
|
353 |
np.testing.assert_allclose(model.predict(self.X), model3.predict(self.X))
|
354 |
|
355 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
356 |
class TestBest(unittest.TestCase):
|
357 |
def setUp(self):
|
358 |
self.rstate = np.random.RandomState(0)
|
359 |
self.X = self.rstate.randn(10, 2)
|
360 |
self.y = np.cos(self.X[:, 0]) ** 2
|
361 |
-
self.model = PySRRegressor(
|
362 |
-
progress=False,
|
363 |
-
niterations=1,
|
364 |
-
extra_sympy_mappings={},
|
365 |
-
output_jax_format=False,
|
366 |
-
model_selection="accuracy",
|
367 |
-
equation_file="equation_file.csv",
|
368 |
-
)
|
369 |
equations = pd.DataFrame(
|
370 |
{
|
371 |
"equation": ["1.0", "cos(x0)", "square(cos(x0))"],
|
@@ -373,17 +404,7 @@ class TestBest(unittest.TestCase):
|
|
373 |
"complexity": [1, 2, 3],
|
374 |
}
|
375 |
)
|
376 |
-
|
377 |
-
# Set up internal parameters as if it had been fitted:
|
378 |
-
self.model.equation_file_ = "equation_file.csv"
|
379 |
-
self.model.nout_ = 1
|
380 |
-
self.model.selection_mask_ = None
|
381 |
-
self.model.feature_names_in_ = np.array(["x0", "x1"], dtype=object)
|
382 |
-
equations["complexity loss equation".split(" ")].to_csv(
|
383 |
-
"equation_file.csv.bkup"
|
384 |
-
)
|
385 |
-
|
386 |
-
self.model.refresh()
|
387 |
self.equations_ = self.model.equations_
|
388 |
|
389 |
def test_best(self):
|
@@ -585,3 +606,197 @@ class TestMiscellaneous(unittest.TestCase):
|
|
585 |
print("\n".join([(" " * 4) + row for row in error_message.split("\n")]))
|
586 |
# If any checks failed don't let the test pass.
|
587 |
self.assertEqual(len(exception_messages), 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
_csv_filename_to_pkl_filename,
|
12 |
idx_model_selection,
|
13 |
)
|
14 |
+
from pysr.export_latex import to_latex
|
15 |
from sklearn.utils.estimator_checks import check_estimator
|
16 |
import sympy
|
17 |
import pandas as pd
|
|
|
354 |
np.testing.assert_allclose(model.predict(self.X), model3.predict(self.X))
|
355 |
|
356 |
|
357 |
+
def manually_create_model(equations, feature_names=None):
|
358 |
+
if feature_names is None:
|
359 |
+
feature_names = ["x0", "x1"]
|
360 |
+
|
361 |
+
model = PySRRegressor(
|
362 |
+
progress=False,
|
363 |
+
niterations=1,
|
364 |
+
extra_sympy_mappings={},
|
365 |
+
output_jax_format=False,
|
366 |
+
model_selection="accuracy",
|
367 |
+
equation_file="equation_file.csv",
|
368 |
+
)
|
369 |
+
|
370 |
+
# Set up internal parameters as if it had been fitted:
|
371 |
+
if isinstance(equations, list):
|
372 |
+
# Multi-output.
|
373 |
+
model.equation_file_ = "equation_file.csv"
|
374 |
+
model.nout_ = len(equations)
|
375 |
+
model.selection_mask_ = None
|
376 |
+
model.feature_names_in_ = np.array(feature_names, dtype=object)
|
377 |
+
for i in range(model.nout_):
|
378 |
+
equations[i]["complexity loss equation".split(" ")].to_csv(
|
379 |
+
f"equation_file.csv.out{i+1}.bkup"
|
380 |
+
)
|
381 |
+
else:
|
382 |
+
model.equation_file_ = "equation_file.csv"
|
383 |
+
model.nout_ = 1
|
384 |
+
model.selection_mask_ = None
|
385 |
+
model.feature_names_in_ = np.array(feature_names, dtype=object)
|
386 |
+
equations["complexity loss equation".split(" ")].to_csv(
|
387 |
+
"equation_file.csv.bkup"
|
388 |
+
)
|
389 |
+
|
390 |
+
model.refresh()
|
391 |
+
|
392 |
+
return model
|
393 |
+
|
394 |
+
|
395 |
class TestBest(unittest.TestCase):
|
396 |
def setUp(self):
|
397 |
self.rstate = np.random.RandomState(0)
|
398 |
self.X = self.rstate.randn(10, 2)
|
399 |
self.y = np.cos(self.X[:, 0]) ** 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
400 |
equations = pd.DataFrame(
|
401 |
{
|
402 |
"equation": ["1.0", "cos(x0)", "square(cos(x0))"],
|
|
|
404 |
"complexity": [1, 2, 3],
|
405 |
}
|
406 |
)
|
407 |
+
self.model = manually_create_model(equations)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
408 |
self.equations_ = self.model.equations_
|
409 |
|
410 |
def test_best(self):
|
|
|
606 |
print("\n".join([(" " * 4) + row for row in error_message.split("\n")]))
|
607 |
# If any checks failed don't let the test pass.
|
608 |
self.assertEqual(len(exception_messages), 0)
|
609 |
+
|
610 |
+
|
611 |
+
TRUE_PREAMBLE = "\n".join(
|
612 |
+
[
|
613 |
+
r"\usepackage{breqn}",
|
614 |
+
r"\usepackage{booktabs}",
|
615 |
+
"",
|
616 |
+
"...",
|
617 |
+
"",
|
618 |
+
]
|
619 |
+
)
|
620 |
+
|
621 |
+
|
622 |
+
class TestLaTeXTable(unittest.TestCase):
|
623 |
+
def setUp(self):
|
624 |
+
equations = pd.DataFrame(
|
625 |
+
dict(
|
626 |
+
equation=["x0", "cos(x0)", "x0 + x1 - cos(x1 * x0)"],
|
627 |
+
loss=[1.052, 0.02315, 1.12347e-15],
|
628 |
+
complexity=[1, 2, 8],
|
629 |
+
)
|
630 |
+
)
|
631 |
+
self.model = manually_create_model(equations)
|
632 |
+
self.maxDiff = None
|
633 |
+
|
634 |
+
def create_true_latex(self, middle_part, include_score=False):
|
635 |
+
if include_score:
|
636 |
+
true_latex_table_str = r"""
|
637 |
+
\begin{table}[h]
|
638 |
+
\begin{center}
|
639 |
+
\begin{tabular}{@{}cccc@{}}
|
640 |
+
\toprule
|
641 |
+
Equation & Complexity & Loss & Score \\
|
642 |
+
\midrule"""
|
643 |
+
else:
|
644 |
+
true_latex_table_str = r"""
|
645 |
+
\begin{table}[h]
|
646 |
+
\begin{center}
|
647 |
+
\begin{tabular}{@{}ccc@{}}
|
648 |
+
\toprule
|
649 |
+
Equation & Complexity & Loss \\
|
650 |
+
\midrule"""
|
651 |
+
true_latex_table_str += middle_part
|
652 |
+
true_latex_table_str += r"""\bottomrule
|
653 |
+
\end{tabular}
|
654 |
+
\end{center}
|
655 |
+
\end{table}
|
656 |
+
"""
|
657 |
+
# First, remove empty lines:
|
658 |
+
true_latex_table_str = "\n".join(
|
659 |
+
[line.strip() for line in true_latex_table_str.split("\n") if len(line) > 0]
|
660 |
+
)
|
661 |
+
return true_latex_table_str.strip()
|
662 |
+
|
663 |
+
def test_simple_table(self):
|
664 |
+
latex_table_str = self.model.latex_table(
|
665 |
+
columns=["equation", "complexity", "loss"]
|
666 |
+
)
|
667 |
+
middle_part = r"""
|
668 |
+
$y = x_{0}$ & $1$ & $1.05$ \\
|
669 |
+
$y = \cos{\left(x_{0} \right)}$ & $2$ & $0.0232$ \\
|
670 |
+
$y = x_{0} + x_{1} - \cos{\left(x_{0} x_{1} \right)}$ & $8$ & $1.12 \cdot 10^{-15}$ \\
|
671 |
+
"""
|
672 |
+
true_latex_table_str = (
|
673 |
+
TRUE_PREAMBLE + "\n" + self.create_true_latex(middle_part)
|
674 |
+
)
|
675 |
+
self.assertEqual(latex_table_str, true_latex_table_str)
|
676 |
+
|
677 |
+
def test_other_precision(self):
|
678 |
+
latex_table_str = self.model.latex_table(
|
679 |
+
precision=5, columns=["equation", "complexity", "loss"]
|
680 |
+
)
|
681 |
+
middle_part = r"""
|
682 |
+
$y = x_{0}$ & $1$ & $1.0520$ \\
|
683 |
+
$y = \cos{\left(x_{0} \right)}$ & $2$ & $0.023150$ \\
|
684 |
+
$y = x_{0} + x_{1} - \cos{\left(x_{0} x_{1} \right)}$ & $8$ & $1.1235 \cdot 10^{-15}$ \\
|
685 |
+
"""
|
686 |
+
true_latex_table_str = (
|
687 |
+
TRUE_PREAMBLE + "\n" + self.create_true_latex(middle_part)
|
688 |
+
)
|
689 |
+
self.assertEqual(latex_table_str, true_latex_table_str)
|
690 |
+
|
691 |
+
def test_include_score(self):
|
692 |
+
latex_table_str = self.model.latex_table()
|
693 |
+
middle_part = r"""
|
694 |
+
$y = x_{0}$ & $1$ & $1.05$ & $0.0$ \\
|
695 |
+
$y = \cos{\left(x_{0} \right)}$ & $2$ & $0.0232$ & $3.82$ \\
|
696 |
+
$y = x_{0} + x_{1} - \cos{\left(x_{0} x_{1} \right)}$ & $8$ & $1.12 \cdot 10^{-15}$ & $5.11$ \\
|
697 |
+
"""
|
698 |
+
true_latex_table_str = (
|
699 |
+
TRUE_PREAMBLE
|
700 |
+
+ "\n"
|
701 |
+
+ self.create_true_latex(middle_part, include_score=True)
|
702 |
+
)
|
703 |
+
self.assertEqual(latex_table_str, true_latex_table_str)
|
704 |
+
|
705 |
+
def test_last_equation(self):
|
706 |
+
latex_table_str = self.model.latex_table(
|
707 |
+
indices=[2], columns=["equation", "complexity", "loss"]
|
708 |
+
)
|
709 |
+
middle_part = r"""
|
710 |
+
$y = x_{0} + x_{1} - \cos{\left(x_{0} x_{1} \right)}$ & $8$ & $1.12 \cdot 10^{-15}$ \\
|
711 |
+
"""
|
712 |
+
true_latex_table_str = (
|
713 |
+
TRUE_PREAMBLE + "\n" + self.create_true_latex(middle_part)
|
714 |
+
)
|
715 |
+
self.assertEqual(latex_table_str, true_latex_table_str)
|
716 |
+
|
717 |
+
def test_multi_output(self):
|
718 |
+
equations1 = pd.DataFrame(
|
719 |
+
dict(
|
720 |
+
equation=["x0", "cos(x0)", "x0 + x1 - cos(x1 * x0)"],
|
721 |
+
loss=[1.052, 0.02315, 1.12347e-15],
|
722 |
+
complexity=[1, 2, 8],
|
723 |
+
)
|
724 |
+
)
|
725 |
+
equations2 = pd.DataFrame(
|
726 |
+
dict(
|
727 |
+
equation=["x1", "cos(x1)", "x0 * x0 * x1"],
|
728 |
+
loss=[1.32, 0.052, 2e-15],
|
729 |
+
complexity=[1, 2, 5],
|
730 |
+
)
|
731 |
+
)
|
732 |
+
equations = [equations1, equations2]
|
733 |
+
model = manually_create_model(equations)
|
734 |
+
middle_part_1 = r"""
|
735 |
+
$y_{0} = x_{0}$ & $1$ & $1.05$ & $0.0$ \\
|
736 |
+
$y_{0} = \cos{\left(x_{0} \right)}$ & $2$ & $0.0232$ & $3.82$ \\
|
737 |
+
$y_{0} = x_{0} + x_{1} - \cos{\left(x_{0} x_{1} \right)}$ & $8$ & $1.12 \cdot 10^{-15}$ & $5.11$ \\
|
738 |
+
"""
|
739 |
+
middle_part_2 = r"""
|
740 |
+
$y_{1} = x_{1}$ & $1$ & $1.32$ & $0.0$ \\
|
741 |
+
$y_{1} = \cos{\left(x_{1} \right)}$ & $2$ & $0.0520$ & $3.23$ \\
|
742 |
+
$y_{1} = x_{0}^{2} x_{1}$ & $5$ & $2.00 \cdot 10^{-15}$ & $10.3$ \\
|
743 |
+
"""
|
744 |
+
true_latex_table_str = "\n\n".join(
|
745 |
+
self.create_true_latex(part, include_score=True)
|
746 |
+
for part in [middle_part_1, middle_part_2]
|
747 |
+
)
|
748 |
+
true_latex_table_str = TRUE_PREAMBLE + "\n" + true_latex_table_str
|
749 |
+
latex_table_str = model.latex_table()
|
750 |
+
|
751 |
+
self.assertEqual(latex_table_str, true_latex_table_str)
|
752 |
+
|
753 |
+
def test_latex_float_precision(self):
|
754 |
+
"""Test that we can print latex expressions with custom precision"""
|
755 |
+
expr = sympy.Float(4583.4485748, dps=50)
|
756 |
+
self.assertEqual(to_latex(expr, prec=6), r"4583.45")
|
757 |
+
self.assertEqual(to_latex(expr, prec=5), r"4583.4")
|
758 |
+
self.assertEqual(to_latex(expr, prec=4), r"4583.")
|
759 |
+
self.assertEqual(to_latex(expr, prec=3), r"4.58 \cdot 10^{3}")
|
760 |
+
self.assertEqual(to_latex(expr, prec=2), r"4.6 \cdot 10^{3}")
|
761 |
+
|
762 |
+
# Multiple numbers:
|
763 |
+
x = sympy.Symbol("x")
|
764 |
+
expr = x * 3232.324857384 - 1.4857485e-10
|
765 |
+
self.assertEqual(
|
766 |
+
to_latex(expr, prec=2), "3.2 \cdot 10^{3} x - 1.5 \cdot 10^{-10}"
|
767 |
+
)
|
768 |
+
self.assertEqual(
|
769 |
+
to_latex(expr, prec=3), "3.23 \cdot 10^{3} x - 1.49 \cdot 10^{-10}"
|
770 |
+
)
|
771 |
+
self.assertEqual(
|
772 |
+
to_latex(expr, prec=8), "3232.3249 x - 1.4857485 \cdot 10^{-10}"
|
773 |
+
)
|
774 |
+
|
775 |
+
def test_latex_break_long_equation(self):
|
776 |
+
"""Test that we can break a long equation inside the table"""
|
777 |
+
long_equation = """
|
778 |
+
- cos(x1 * x0) + 3.2 * x0 - 1.2 * x1 + x1 * x1 * x1 + x0 * x0 * x0
|
779 |
+
+ 5.2 * sin(0.3256 * sin(x2) - 2.6 * x0) + x0 * x0 * x0 * x0 * x0
|
780 |
+
+ cos(cos(x1 * x0) + 3.2 * x0 - 1.2 * x1 + x1 * x1 * x1 + x0 * x0 * x0)
|
781 |
+
"""
|
782 |
+
long_equation = "".join(long_equation.split("\n")).strip()
|
783 |
+
equations = pd.DataFrame(
|
784 |
+
dict(
|
785 |
+
equation=["x0", "cos(x0)", long_equation],
|
786 |
+
loss=[1.052, 0.02315, 1.12347e-15],
|
787 |
+
complexity=[1, 2, 30],
|
788 |
+
)
|
789 |
+
)
|
790 |
+
model = manually_create_model(equations)
|
791 |
+
latex_table_str = model.latex_table()
|
792 |
+
middle_part = r"""
|
793 |
+
$y = x_{0}$ & $1$ & $1.05$ & $0.0$ \\
|
794 |
+
$y = \cos{\left(x_{0} \right)}$ & $2$ & $0.0232$ & $3.82$ \\
|
795 |
+
\begin{minipage}{0.8\linewidth} \vspace{-1em} \begin{dmath*} y = x_{0}^{5} + x_{0}^{3} + 3.20 x_{0} + x_{1}^{3} - 1.20 x_{1} - 5.20 \sin{\left(2.60 x_{0} - 0.326 \sin{\left(x_{2} \right)} \right)} - \cos{\left(x_{0} x_{1} \right)} + \cos{\left(x_{0}^{3} + 3.20 x_{0} + x_{1}^{3} - 1.20 x_{1} + \cos{\left(x_{0} x_{1} \right)} \right)} \end{dmath*} \end{minipage} & $30$ & $1.12 \cdot 10^{-15}$ & $1.09$ \\
|
796 |
+
"""
|
797 |
+
true_latex_table_str = (
|
798 |
+
TRUE_PREAMBLE
|
799 |
+
+ "\n"
|
800 |
+
+ self.create_true_latex(middle_part, include_score=True)
|
801 |
+
)
|
802 |
+
self.assertEqual(latex_table_str, true_latex_table_str)
|