Spaces:
Sleeping
Sleeping
Merge branch 'master' into latex-table
Browse files- .gitignore +1 -0
- Dockerfile +7 -0
- README.md +29 -3
- docs/options.md +18 -0
- pysr/sr.py +230 -38
- pysr/version.py +2 -2
- test/test.py +106 -6
- test/test_jax.py +10 -10
- test/test_torch.py +9 -9
.gitignore
CHANGED
|
@@ -3,6 +3,7 @@
|
|
| 3 |
*.csv
|
| 4 |
*.csv.out*
|
| 5 |
*.bkup
|
|
|
|
| 6 |
performance*txt
|
| 7 |
*.out
|
| 8 |
trials*
|
|
|
|
| 3 |
*.csv
|
| 4 |
*.csv.out*
|
| 5 |
*.bkup
|
| 6 |
+
*.pkl
|
| 7 |
performance*txt
|
| 8 |
*.out
|
| 9 |
trials*
|
Dockerfile
CHANGED
|
@@ -3,9 +3,16 @@
|
|
| 3 |
|
| 4 |
ARG ARCH=linux/amd64
|
| 5 |
ARG VERSION=latest
|
|
|
|
| 6 |
|
| 7 |
FROM --platform=$ARCH julia:$VERSION
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
# Need to use ARG after FROM, otherwise it won't get passed through.
|
| 10 |
ARG PYVERSION=3.9.10
|
| 11 |
|
|
|
|
| 3 |
|
| 4 |
ARG ARCH=linux/amd64
|
| 5 |
ARG VERSION=latest
|
| 6 |
+
ARG PKGVERSION=0.9.5
|
| 7 |
|
| 8 |
FROM --platform=$ARCH julia:$VERSION
|
| 9 |
|
| 10 |
+
# metainformation
|
| 11 |
+
LABEL org.opencontainers.image.version = $PKGVERSION
|
| 12 |
+
LABEL org.opencontainers.image.authors = "Miles Cranmer"
|
| 13 |
+
LABEL org.opencontainers.image.source = "https://github.com/MilesCranmer/PySR"
|
| 14 |
+
LABEL org.opencontainers.image.licenses = "Apache License 2.0"
|
| 15 |
+
|
| 16 |
# Need to use ARG after FROM, otherwise it won't get passed through.
|
| 17 |
ARG PYVERSION=3.9.10
|
| 18 |
|
README.md
CHANGED
|
@@ -1,15 +1,24 @@
|
|
| 1 |
[//]: # (Logo:)
|
| 2 |
|
| 3 |
-
<
|
| 4 |
|
|
|
|
|
|
|
| 5 |
# PySR: High-Performance Symbolic Regression in Python
|
| 6 |
|
|
|
|
|
|
|
|
|
|
| 7 |
PySR is built on an extremely optimized pure-Julia backend, and uses regularized evolution, simulated annealing, and gradient-free optimization to search for equations that fit your data.
|
| 8 |
|
|
|
|
|
|
|
| 9 |
| **Docs** | **colab** | **pip** | **conda** | **Stats** |
|
| 10 |
|---|---|---|---|---|
|
| 11 |
|[](https://astroautomata.com/PySR/)|[](https://colab.research.google.com/github/MilesCranmer/PySR/blob/master/examples/pysr_demo.ipynb)|[](https://badge.fury.io/py/pysr)|[](https://anaconda.org/conda-forge/pysr)|[](https://badge.fury.io/py/pysr)|
|
| 12 |
|
|
|
|
|
|
|
| 13 |
|
| 14 |
(pronounced like *py* as in python, and then *sur* as in surface)
|
| 15 |
|
|
@@ -17,7 +26,10 @@ If you find PySR useful, please cite it using the citation information given in
|
|
| 17 |
If you've finished a project with PySR, please submit a PR to showcase your work on the [Research Showcase page](https://astroautomata.com/PySR/#/papers)!
|
| 18 |
|
| 19 |
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
| 21 |
| **Linux** | **Windows** | **macOS (intel)** |
|
| 22 |
|---|---|---|
|
| 23 |
|[](https://github.com/MilesCranmer/PySR/actions/workflows/CI.yml)|[](https://github.com/MilesCranmer/PySR/actions/workflows/CI_Windows.yml)|[](https://github.com/MilesCranmer/PySR/actions/workflows/CI_mac.yml)|
|
|
@@ -25,6 +37,8 @@ If you've finished a project with PySR, please submit a PR to showcase your work
|
|
| 25 |
|[](https://github.com/MilesCranmer/PySR/actions/workflows/CI_docker.yml)|[](https://github.com/MilesCranmer/PySR/actions/workflows/CI_conda_forge.yml)|[](https://coveralls.io/github/MilesCranmer/PySR)|
|
| 26 |
|
| 27 |
|
|
|
|
|
|
|
| 28 |
Check out [SymbolicRegression.jl](https://github.com/MilesCranmer/SymbolicRegression.jl) for
|
| 29 |
the pure-Julia backend of this package.
|
| 30 |
|
|
@@ -58,10 +72,14 @@ python interface.
|
|
| 58 |
|
| 59 |
# Installation
|
| 60 |
|
|
|
|
|
|
|
| 61 |
| pip (macOS, Linux, Windows) | conda (macOS - only Intel, Linux) |
|
| 62 |
|---|---|
|
| 63 |
| 1. Install Julia manually (see [downloads](https://julialang.org/downloads/))<br>2. `pip install pysr`<br>3. `python -c 'import pysr; pysr.install()'` | 1. `conda install -c conda-forge pysr`<br>2. `python -c 'import pysr; pysr.install()'`|
|
| 64 |
|
|
|
|
|
|
|
| 65 |
This last step will install and update the required Julia packages, including
|
| 66 |
`PyCall.jl`.
|
| 67 |
|
|
@@ -144,7 +162,15 @@ This arrow in the `pick` column indicates which equation is currently selected b
|
|
| 144 |
SymPy format (`sympy_format` - which you can also get with `model.sympy()`), and even JAX and PyTorch format
|
| 145 |
(both of which are differentiable - which you can get with `model.jax()` and `model.pytorch()`).
|
| 146 |
|
| 147 |
-
Note that `PySRRegressor` stores the state of the last search, and will restart from where you left off the next time you call `.fit()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
|
| 149 |
There are several other useful features such as denoising (e.g., `denoising=True`),
|
| 150 |
feature selection (e.g., `select_k_features=3`).
|
|
|
|
| 1 |
[//]: # (Logo:)
|
| 2 |
|
| 3 |
+
<div align="center">
|
| 4 |
|
| 5 |
+
<img src="https://raw.githubusercontent.com/MilesCranmer/PySR/master/docs/images/pysr_logo.svg" width="200" />
|
| 6 |
+
|
| 7 |
# PySR: High-Performance Symbolic Regression in Python
|
| 8 |
|
| 9 |
+
</div>
|
| 10 |
+
|
| 11 |
+
|
| 12 |
PySR is built on an extremely optimized pure-Julia backend, and uses regularized evolution, simulated annealing, and gradient-free optimization to search for equations that fit your data.
|
| 13 |
|
| 14 |
+
<div align="center">
|
| 15 |
+
|
| 16 |
| **Docs** | **colab** | **pip** | **conda** | **Stats** |
|
| 17 |
|---|---|---|---|---|
|
| 18 |
|[](https://astroautomata.com/PySR/)|[](https://colab.research.google.com/github/MilesCranmer/PySR/blob/master/examples/pysr_demo.ipynb)|[](https://badge.fury.io/py/pysr)|[](https://anaconda.org/conda-forge/pysr)|[](https://badge.fury.io/py/pysr)|
|
| 19 |
|
| 20 |
+
</div>
|
| 21 |
+
|
| 22 |
|
| 23 |
(pronounced like *py* as in python, and then *sur* as in surface)
|
| 24 |
|
|
|
|
| 26 |
If you've finished a project with PySR, please submit a PR to showcase your work on the [Research Showcase page](https://astroautomata.com/PySR/#/papers)!
|
| 27 |
|
| 28 |
|
| 29 |
+
<div align="center">
|
| 30 |
+
|
| 31 |
+
### Test status
|
| 32 |
+
|
| 33 |
| **Linux** | **Windows** | **macOS (intel)** |
|
| 34 |
|---|---|---|
|
| 35 |
|[](https://github.com/MilesCranmer/PySR/actions/workflows/CI.yml)|[](https://github.com/MilesCranmer/PySR/actions/workflows/CI_Windows.yml)|[](https://github.com/MilesCranmer/PySR/actions/workflows/CI_mac.yml)|
|
|
|
|
| 37 |
|[](https://github.com/MilesCranmer/PySR/actions/workflows/CI_docker.yml)|[](https://github.com/MilesCranmer/PySR/actions/workflows/CI_conda_forge.yml)|[](https://coveralls.io/github/MilesCranmer/PySR)|
|
| 38 |
|
| 39 |
|
| 40 |
+
</div>
|
| 41 |
+
|
| 42 |
Check out [SymbolicRegression.jl](https://github.com/MilesCranmer/SymbolicRegression.jl) for
|
| 43 |
the pure-Julia backend of this package.
|
| 44 |
|
|
|
|
| 72 |
|
| 73 |
# Installation
|
| 74 |
|
| 75 |
+
<div align="center">
|
| 76 |
+
|
| 77 |
| pip (macOS, Linux, Windows) | conda (macOS - only Intel, Linux) |
|
| 78 |
|---|---|
|
| 79 |
| 1. Install Julia manually (see [downloads](https://julialang.org/downloads/))<br>2. `pip install pysr`<br>3. `python -c 'import pysr; pysr.install()'` | 1. `conda install -c conda-forge pysr`<br>2. `python -c 'import pysr; pysr.install()'`|
|
| 80 |
|
| 81 |
+
</div>
|
| 82 |
+
|
| 83 |
This last step will install and update the required Julia packages, including
|
| 84 |
`PyCall.jl`.
|
| 85 |
|
|
|
|
| 162 |
SymPy format (`sympy_format` - which you can also get with `model.sympy()`), and even JAX and PyTorch format
|
| 163 |
(both of which are differentiable - which you can get with `model.jax()` and `model.pytorch()`).
|
| 164 |
|
| 165 |
+
Note that `PySRRegressor` stores the state of the last search, and will restart from where you left off the next time you call `.fit()`, assuming you have set `warm_start=True`.
|
| 166 |
+
This will cause problems if significant changes are made to the search parameters (like changing the operators). You can run `model.reset()` to reset the state.
|
| 167 |
+
|
| 168 |
+
You will notice that PySR will save two files: `hall_of_fame...csv` and `hall_of_fame...pkl`.
|
| 169 |
+
The csv file is a list of equations and their losses, and the pkl file is a saved state of the model.
|
| 170 |
+
You may load the model from the `pkl` file with:
|
| 171 |
+
```python
|
| 172 |
+
model = PySRRegressor.from_file("hall_of_fame.2022-08-10_100832.281.pkl")
|
| 173 |
+
```
|
| 174 |
|
| 175 |
There are several other useful features such as denoising (e.g., `denoising=True`),
|
| 176 |
feature selection (e.g., `select_k_features=3`).
|
docs/options.md
CHANGED
|
@@ -16,6 +16,7 @@ may find useful include:
|
|
| 16 |
- LaTeX, SymPy
|
| 17 |
- Callable exports: numpy, pytorch, jax
|
| 18 |
- `loss`
|
|
|
|
| 19 |
|
| 20 |
These are described below
|
| 21 |
|
|
@@ -252,3 +253,20 @@ Can also uses these losses for weighted (weighted-average):
|
|
| 252 |
model = PySRRegressor(..., weights=weights, loss="LPDistLoss{3}()")
|
| 253 |
model.fit(..., weights=weights)
|
| 254 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
- LaTeX, SymPy
|
| 17 |
- Callable exports: numpy, pytorch, jax
|
| 18 |
- `loss`
|
| 19 |
+
- Model loading
|
| 20 |
|
| 21 |
These are described below
|
| 22 |
|
|
|
|
| 253 |
model = PySRRegressor(..., weights=weights, loss="LPDistLoss{3}()")
|
| 254 |
model.fit(..., weights=weights)
|
| 255 |
```
|
| 256 |
+
|
| 257 |
+
## Model loading
|
| 258 |
+
|
| 259 |
+
PySR will automatically save a pickle file of the model state
|
| 260 |
+
when you call `model.fit`, once before the search starts,
|
| 261 |
+
and again after the search finishes. The filename will
|
| 262 |
+
have the same base name as the input file, but with a `.pkl` extension.
|
| 263 |
+
You can load the saved model state with:
|
| 264 |
+
```python
|
| 265 |
+
model = PySRRegressor.from_file(pickle_filename)
|
| 266 |
+
```
|
| 267 |
+
If you have a long-running job and would like to load the model
|
| 268 |
+
before completion, you can also do this. In this case, the model
|
| 269 |
+
loading will use the `csv` file to load the equations, since the
|
| 270 |
+
`csv` file is continually updated during the search. Once
|
| 271 |
+
the search completes, the model including its equations will
|
| 272 |
+
be saved to the pickle file, overwriting the existing version.
|
pysr/sr.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import os
|
| 2 |
import sys
|
| 3 |
import numpy as np
|
|
@@ -8,6 +9,7 @@ import re
|
|
| 8 |
import tempfile
|
| 9 |
import shutil
|
| 10 |
from pathlib import Path
|
|
|
|
| 11 |
from datetime import datetime
|
| 12 |
import warnings
|
| 13 |
from multiprocessing import cpu_count
|
|
@@ -204,10 +206,18 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
|
|
| 204 |
Parameters
|
| 205 |
----------
|
| 206 |
model_selection : str, default="best"
|
| 207 |
-
Model selection criterion
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
the
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
|
| 212 |
binary_operators : list[str], default=["+", "-", "*", "/"]
|
| 213 |
List of strings giving the binary operators in Julia's Base.
|
|
@@ -468,7 +478,7 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
|
|
| 468 |
Whether to use a progress bar instead of printing to stdout.
|
| 469 |
|
| 470 |
equation_file : str, default=None
|
| 471 |
-
Where to save the files (.csv
|
| 472 |
|
| 473 |
temp_equation_file : bool, default=False
|
| 474 |
Whether to put the hall of fame file in the temp directory.
|
|
@@ -563,6 +573,9 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
|
|
| 563 |
equation_file_contents_ : list[pandas.DataFrame]
|
| 564 |
Contents of the equation file output by the Julia backend.
|
| 565 |
|
|
|
|
|
|
|
|
|
|
| 566 |
Notes
|
| 567 |
-----
|
| 568 |
Most default parameters have been tuned over several example equations,
|
|
@@ -806,6 +819,119 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
|
|
| 806 |
f"{k} is not a valid keyword argument for PySRRegressor."
|
| 807 |
)
|
| 808 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 809 |
def __repr__(self):
|
| 810 |
"""
|
| 811 |
Prints all current equations fitted by the model.
|
|
@@ -826,12 +952,7 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
|
|
| 826 |
|
| 827 |
for i, equations in enumerate(all_equations):
|
| 828 |
selected = ["" for _ in range(len(equations))]
|
| 829 |
-
|
| 830 |
-
chosen_row = -1
|
| 831 |
-
elif self.model_selection == "best":
|
| 832 |
-
chosen_row = equations["score"].idxmax()
|
| 833 |
-
else:
|
| 834 |
-
raise NotImplementedError
|
| 835 |
selected[chosen_row] = ">>>>"
|
| 836 |
repr_equations = pd.DataFrame(
|
| 837 |
dict(
|
|
@@ -874,17 +995,31 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
|
|
| 874 |
from the pickled instance.
|
| 875 |
"""
|
| 876 |
state = self.__dict__
|
| 877 |
-
|
|
|
|
|
|
|
|
|
|
| 878 |
warnings.warn(
|
| 879 |
"raw_julia_state_ cannot be pickled and will be removed from the "
|
| 880 |
"serialized instance. This will prevent a `warm_start` fit of any "
|
| 881 |
"model that is deserialized via `pickle.load()`."
|
| 882 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 883 |
pickled_state = {
|
| 884 |
-
key: None if key
|
| 885 |
for key, value in state.items()
|
| 886 |
}
|
| 887 |
-
if "equations_" in pickled_state
|
|
|
|
|
|
|
| 888 |
pickled_state["output_torch_format"] = False
|
| 889 |
pickled_state["output_jax_format"] = False
|
| 890 |
if self.nout_ == 1:
|
|
@@ -907,6 +1042,16 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
|
|
| 907 |
]
|
| 908 |
return pickled_state
|
| 909 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 910 |
@property
|
| 911 |
def equations(self): # pragma: no cover
|
| 912 |
warnings.warn(
|
|
@@ -950,18 +1095,14 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
|
|
| 950 |
return [eq.iloc[i] for eq, i in zip(self.equations_, index)]
|
| 951 |
return self.equations_.iloc[index]
|
| 952 |
|
| 953 |
-
if self.
|
| 954 |
-
|
| 955 |
-
|
| 956 |
-
|
| 957 |
-
|
| 958 |
-
|
| 959 |
-
|
| 960 |
-
|
| 961 |
-
else:
|
| 962 |
-
raise NotImplementedError(
|
| 963 |
-
f"{self.model_selection} is not a valid model selection strategy."
|
| 964 |
-
)
|
| 965 |
|
| 966 |
def _setup_equation_file(self):
|
| 967 |
"""
|
|
@@ -1607,8 +1748,20 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
|
|
| 1607 |
y,
|
| 1608 |
)
|
| 1609 |
|
| 1610 |
-
#
|
| 1611 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1612 |
|
| 1613 |
def refresh(self, checkpoint_file=None):
|
| 1614 |
"""
|
|
@@ -1620,10 +1773,10 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
|
|
| 1620 |
checkpoint_file : str, default=None
|
| 1621 |
Path to checkpoint hall of fame file to be loaded.
|
| 1622 |
"""
|
| 1623 |
-
check_is_fitted(self, attributes=["equation_file_"])
|
| 1624 |
if checkpoint_file:
|
| 1625 |
self.equation_file_ = checkpoint_file
|
| 1626 |
self.equation_file_contents_ = None
|
|
|
|
| 1627 |
self.equations_ = self.get_hof()
|
| 1628 |
|
| 1629 |
def predict(self, X, index=None):
|
|
@@ -1695,7 +1848,8 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
|
|
| 1695 |
raise ValueError(
|
| 1696 |
"Failed to evaluate the expression. "
|
| 1697 |
"If you are using a custom operator, make sure to define it in :param`extra_sympy_mappings`, "
|
| 1698 |
-
"e.g., `model.set_params(extra_sympy_mappings={'inv': lambda x: 1 / x})`."
|
|
|
|
| 1699 |
) from error
|
| 1700 |
|
| 1701 |
def sympy(self, index=None):
|
|
@@ -1819,15 +1973,15 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
|
|
| 1819 |
if self.nout_ > 1:
|
| 1820 |
all_outputs = []
|
| 1821 |
for i in range(1, self.nout_ + 1):
|
| 1822 |
-
|
| 1823 |
-
|
| 1824 |
-
|
| 1825 |
-
)
|
| 1826 |
# Rename Complexity column to complexity:
|
| 1827 |
df.rename(
|
| 1828 |
columns={
|
| 1829 |
"Complexity": "complexity",
|
| 1830 |
-
"
|
| 1831 |
"Equation": "equation",
|
| 1832 |
},
|
| 1833 |
inplace=True,
|
|
@@ -1835,11 +1989,14 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
|
|
| 1835 |
|
| 1836 |
all_outputs.append(df)
|
| 1837 |
else:
|
| 1838 |
-
|
|
|
|
|
|
|
|
|
|
| 1839 |
all_outputs[-1].rename(
|
| 1840 |
columns={
|
| 1841 |
"Complexity": "complexity",
|
| 1842 |
-
"
|
| 1843 |
"Equation": "equation",
|
| 1844 |
},
|
| 1845 |
inplace=True,
|
|
@@ -1893,7 +2050,9 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
|
|
| 1893 |
|
| 1894 |
ret_outputs = []
|
| 1895 |
|
| 1896 |
-
|
|
|
|
|
|
|
| 1897 |
|
| 1898 |
scores = []
|
| 1899 |
lastMSE = None
|
|
@@ -2043,6 +2202,26 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
|
|
| 2043 |
)
|
| 2044 |
|
| 2045 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2046 |
def _denoise(X, y, Xresampled=None, random_state=None):
|
| 2047 |
"""Denoise the dataset using a Gaussian process"""
|
| 2048 |
from sklearn.gaussian_process import GaussianProcessRegressor
|
|
@@ -2088,3 +2267,16 @@ def run_feature_selection(X, y, select_k_features, random_state=None):
|
|
| 2088 |
clf, threshold=-np.inf, max_features=select_k_features, prefit=True
|
| 2089 |
)
|
| 2090 |
return selector.get_support(indices=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import copy
|
| 2 |
import os
|
| 3 |
import sys
|
| 4 |
import numpy as np
|
|
|
|
| 9 |
import tempfile
|
| 10 |
import shutil
|
| 11 |
from pathlib import Path
|
| 12 |
+
import pickle as pkl
|
| 13 |
from datetime import datetime
|
| 14 |
import warnings
|
| 15 |
from multiprocessing import cpu_count
|
|
|
|
| 206 |
Parameters
|
| 207 |
----------
|
| 208 |
model_selection : str, default="best"
|
| 209 |
+
Model selection criterion when selecting a final expression from
|
| 210 |
+
the list of best expression at each complexity.
|
| 211 |
+
Can be 'accuracy', 'best', or 'score'.
|
| 212 |
+
- `"accuracy"` selects the candidate model with the lowest loss
|
| 213 |
+
(highest accuracy).
|
| 214 |
+
- `"score"` selects the candidate model with the highest score.
|
| 215 |
+
Score is defined as the negated derivative of the log-loss with
|
| 216 |
+
respect to complexity - if an expression has a much better
|
| 217 |
+
loss at a slightly higher complexity, it is preferred.
|
| 218 |
+
- `"best"` selects the candidate model with the highest score
|
| 219 |
+
among expressions with a loss better than at least 1.5x the
|
| 220 |
+
most accurate model.
|
| 221 |
|
| 222 |
binary_operators : list[str], default=["+", "-", "*", "/"]
|
| 223 |
List of strings giving the binary operators in Julia's Base.
|
|
|
|
| 478 |
Whether to use a progress bar instead of printing to stdout.
|
| 479 |
|
| 480 |
equation_file : str, default=None
|
| 481 |
+
Where to save the files (.csv extension).
|
| 482 |
|
| 483 |
temp_equation_file : bool, default=False
|
| 484 |
Whether to put the hall of fame file in the temp directory.
|
|
|
|
| 573 |
equation_file_contents_ : list[pandas.DataFrame]
|
| 574 |
Contents of the equation file output by the Julia backend.
|
| 575 |
|
| 576 |
+
show_pickle_warnings_ : bool
|
| 577 |
+
Whether to show warnings about what attributes can be pickled.
|
| 578 |
+
|
| 579 |
Notes
|
| 580 |
-----
|
| 581 |
Most default parameters have been tuned over several example equations,
|
|
|
|
| 819 |
f"{k} is not a valid keyword argument for PySRRegressor."
|
| 820 |
)
|
| 821 |
|
| 822 |
+
@classmethod
|
| 823 |
+
def from_file(
|
| 824 |
+
cls,
|
| 825 |
+
equation_file,
|
| 826 |
+
*,
|
| 827 |
+
binary_operators=None,
|
| 828 |
+
unary_operators=None,
|
| 829 |
+
n_features_in=None,
|
| 830 |
+
feature_names_in=None,
|
| 831 |
+
selection_mask=None,
|
| 832 |
+
nout=1,
|
| 833 |
+
**pysr_kwargs,
|
| 834 |
+
):
|
| 835 |
+
"""
|
| 836 |
+
Create a model from a saved model checkpoint or equation file.
|
| 837 |
+
|
| 838 |
+
Parameters
|
| 839 |
+
----------
|
| 840 |
+
equation_file : str
|
| 841 |
+
Path to a pickle file containing a saved model, or a csv file
|
| 842 |
+
containing equations.
|
| 843 |
+
|
| 844 |
+
binary_operators : list[str]
|
| 845 |
+
The same binary operators used when creating the model.
|
| 846 |
+
Not needed if loading from a pickle file.
|
| 847 |
+
|
| 848 |
+
unary_operators : list[str]
|
| 849 |
+
The same unary operators used when creating the model.
|
| 850 |
+
Not needed if loading from a pickle file.
|
| 851 |
+
|
| 852 |
+
n_features_in : int
|
| 853 |
+
Number of features passed to the model.
|
| 854 |
+
Not needed if loading from a pickle file.
|
| 855 |
+
|
| 856 |
+
feature_names_in : list[str]
|
| 857 |
+
Names of the features passed to the model.
|
| 858 |
+
Not needed if loading from a pickle file.
|
| 859 |
+
|
| 860 |
+
selection_mask : list[bool]
|
| 861 |
+
If using select_k_features, you must pass `model.selection_mask_` here.
|
| 862 |
+
Not needed if loading from a pickle file.
|
| 863 |
+
|
| 864 |
+
nout : int, default=1
|
| 865 |
+
Number of outputs of the model.
|
| 866 |
+
Not needed if loading from a pickle file.
|
| 867 |
+
|
| 868 |
+
pysr_kwargs : dict
|
| 869 |
+
Any other keyword arguments to initialize the PySRRegressor object.
|
| 870 |
+
These will overwrite those stored in the pickle file.
|
| 871 |
+
Not needed if loading from a pickle file.
|
| 872 |
+
|
| 873 |
+
Returns
|
| 874 |
+
-------
|
| 875 |
+
model : PySRRegressor
|
| 876 |
+
The model with fitted equations.
|
| 877 |
+
"""
|
| 878 |
+
if os.path.splitext(equation_file)[1] != ".pkl":
|
| 879 |
+
pkl_filename = _csv_filename_to_pkl_filename(equation_file)
|
| 880 |
+
else:
|
| 881 |
+
pkl_filename = equation_file
|
| 882 |
+
|
| 883 |
+
# Try to load model from <equation_file>.pkl
|
| 884 |
+
print(f"Checking if {pkl_filename} exists...")
|
| 885 |
+
if os.path.exists(pkl_filename):
|
| 886 |
+
print(f"Loading model from {pkl_filename}")
|
| 887 |
+
assert binary_operators is None
|
| 888 |
+
assert unary_operators is None
|
| 889 |
+
assert n_features_in is None
|
| 890 |
+
with open(pkl_filename, "rb") as f:
|
| 891 |
+
model = pkl.load(f)
|
| 892 |
+
# Update any parameters if necessary, such as
|
| 893 |
+
# extra_sympy_mappings:
|
| 894 |
+
model.set_params(**pysr_kwargs)
|
| 895 |
+
if "equations_" not in model.__dict__ or model.equations_ is None:
|
| 896 |
+
model.refresh()
|
| 897 |
+
|
| 898 |
+
return model
|
| 899 |
+
|
| 900 |
+
# Else, we re-create it.
|
| 901 |
+
print(
|
| 902 |
+
f"{equation_file} does not exist, "
|
| 903 |
+
"so we must create the model from scratch."
|
| 904 |
+
)
|
| 905 |
+
assert binary_operators is not None
|
| 906 |
+
assert unary_operators is not None
|
| 907 |
+
assert n_features_in is not None
|
| 908 |
+
|
| 909 |
+
# TODO: copy .bkup file if exists.
|
| 910 |
+
model = cls(
|
| 911 |
+
equation_file=equation_file,
|
| 912 |
+
binary_operators=binary_operators,
|
| 913 |
+
unary_operators=unary_operators,
|
| 914 |
+
**pysr_kwargs,
|
| 915 |
+
)
|
| 916 |
+
|
| 917 |
+
model.nout_ = nout
|
| 918 |
+
model.n_features_in_ = n_features_in
|
| 919 |
+
|
| 920 |
+
if feature_names_in is None:
|
| 921 |
+
model.feature_names_in_ = [f"x{i}" for i in range(n_features_in)]
|
| 922 |
+
else:
|
| 923 |
+
assert len(feature_names_in) == n_features_in
|
| 924 |
+
model.feature_names_in_ = feature_names_in
|
| 925 |
+
|
| 926 |
+
if selection_mask is None:
|
| 927 |
+
model.selection_mask_ = np.ones(n_features_in, dtype=bool)
|
| 928 |
+
else:
|
| 929 |
+
model.selection_mask_ = selection_mask
|
| 930 |
+
|
| 931 |
+
model.refresh(checkpoint_file=equation_file)
|
| 932 |
+
|
| 933 |
+
return model
|
| 934 |
+
|
| 935 |
def __repr__(self):
|
| 936 |
"""
|
| 937 |
Prints all current equations fitted by the model.
|
|
|
|
| 952 |
|
| 953 |
for i, equations in enumerate(all_equations):
|
| 954 |
selected = ["" for _ in range(len(equations))]
|
| 955 |
+
chosen_row = idx_model_selection(equations, self.model_selection)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 956 |
selected[chosen_row] = ">>>>"
|
| 957 |
repr_equations = pd.DataFrame(
|
| 958 |
dict(
|
|
|
|
| 995 |
from the pickled instance.
|
| 996 |
"""
|
| 997 |
state = self.__dict__
|
| 998 |
+
show_pickle_warning = not (
|
| 999 |
+
"show_pickle_warnings_" in state and not state["show_pickle_warnings_"]
|
| 1000 |
+
)
|
| 1001 |
+
if "raw_julia_state_" in state and show_pickle_warning:
|
| 1002 |
warnings.warn(
|
| 1003 |
"raw_julia_state_ cannot be pickled and will be removed from the "
|
| 1004 |
"serialized instance. This will prevent a `warm_start` fit of any "
|
| 1005 |
"model that is deserialized via `pickle.load()`."
|
| 1006 |
)
|
| 1007 |
+
state_keys_containing_lambdas = ["extra_sympy_mappings", "extra_torch_mappings"]
|
| 1008 |
+
for state_key in state_keys_containing_lambdas:
|
| 1009 |
+
if state[state_key] is not None and show_pickle_warning:
|
| 1010 |
+
warnings.warn(
|
| 1011 |
+
f"`{state_key}` cannot be pickled and will be removed from the "
|
| 1012 |
+
"serialized instance. When loading the model, please redefine "
|
| 1013 |
+
f"`{state_key}` at runtime."
|
| 1014 |
+
)
|
| 1015 |
+
state_keys_to_clear = ["raw_julia_state_"] + state_keys_containing_lambdas
|
| 1016 |
pickled_state = {
|
| 1017 |
+
key: (None if key in state_keys_to_clear else value)
|
| 1018 |
for key, value in state.items()
|
| 1019 |
}
|
| 1020 |
+
if ("equations_" in pickled_state) and (
|
| 1021 |
+
pickled_state["equations_"] is not None
|
| 1022 |
+
):
|
| 1023 |
pickled_state["output_torch_format"] = False
|
| 1024 |
pickled_state["output_jax_format"] = False
|
| 1025 |
if self.nout_ == 1:
|
|
|
|
| 1042 |
]
|
| 1043 |
return pickled_state
|
| 1044 |
|
| 1045 |
+
def _checkpoint(self):
|
| 1046 |
+
"""Saves the model's current state to a checkpoint file.
|
| 1047 |
+
|
| 1048 |
+
This should only be used internally by PySRRegressor."""
|
| 1049 |
+
# Save model state:
|
| 1050 |
+
self.show_pickle_warnings_ = False
|
| 1051 |
+
with open(_csv_filename_to_pkl_filename(self.equation_file_), "wb") as f:
|
| 1052 |
+
pkl.dump(self, f)
|
| 1053 |
+
self.show_pickle_warnings_ = True
|
| 1054 |
+
|
| 1055 |
@property
|
| 1056 |
def equations(self): # pragma: no cover
|
| 1057 |
warnings.warn(
|
|
|
|
| 1095 |
return [eq.iloc[i] for eq, i in zip(self.equations_, index)]
|
| 1096 |
return self.equations_.iloc[index]
|
| 1097 |
|
| 1098 |
+
if isinstance(self.equations_, list):
|
| 1099 |
+
return [
|
| 1100 |
+
eq.iloc[idx_model_selection(eq, self.model_selection)]
|
| 1101 |
+
for eq in self.equations_
|
| 1102 |
+
]
|
| 1103 |
+
return self.equations_.iloc[
|
| 1104 |
+
idx_model_selection(self.equations_, self.model_selection)
|
| 1105 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1106 |
|
| 1107 |
def _setup_equation_file(self):
|
| 1108 |
"""
|
|
|
|
| 1748 |
y,
|
| 1749 |
)
|
| 1750 |
|
| 1751 |
+
# Initially, just save model parameters, so that
|
| 1752 |
+
# it can be loaded from an early exit:
|
| 1753 |
+
if not self.temp_equation_file:
|
| 1754 |
+
self._checkpoint()
|
| 1755 |
+
|
| 1756 |
+
# Perform the search:
|
| 1757 |
+
self._run(X, y, mutated_params, weights=weights, seed=seed)
|
| 1758 |
+
|
| 1759 |
+
# Then, after fit, we save again, so the pickle file contains
|
| 1760 |
+
# the equations:
|
| 1761 |
+
if not self.temp_equation_file:
|
| 1762 |
+
self._checkpoint()
|
| 1763 |
+
|
| 1764 |
+
return self
|
| 1765 |
|
| 1766 |
def refresh(self, checkpoint_file=None):
|
| 1767 |
"""
|
|
|
|
| 1773 |
checkpoint_file : str, default=None
|
| 1774 |
Path to checkpoint hall of fame file to be loaded.
|
| 1775 |
"""
|
|
|
|
| 1776 |
if checkpoint_file:
|
| 1777 |
self.equation_file_ = checkpoint_file
|
| 1778 |
self.equation_file_contents_ = None
|
| 1779 |
+
check_is_fitted(self, attributes=["equation_file_"])
|
| 1780 |
self.equations_ = self.get_hof()
|
| 1781 |
|
| 1782 |
def predict(self, X, index=None):
|
|
|
|
| 1848 |
raise ValueError(
|
| 1849 |
"Failed to evaluate the expression. "
|
| 1850 |
"If you are using a custom operator, make sure to define it in :param`extra_sympy_mappings`, "
|
| 1851 |
+
"e.g., `model.set_params(extra_sympy_mappings={'inv': lambda x: 1 / x})`. You can then "
|
| 1852 |
+
"run `model.refresh()` to re-load the expressions."
|
| 1853 |
) from error
|
| 1854 |
|
| 1855 |
def sympy(self, index=None):
|
|
|
|
| 1973 |
if self.nout_ > 1:
|
| 1974 |
all_outputs = []
|
| 1975 |
for i in range(1, self.nout_ + 1):
|
| 1976 |
+
cur_filename = str(self.equation_file_) + f".out{i}" + ".bkup"
|
| 1977 |
+
if not os.path.exists(cur_filename):
|
| 1978 |
+
cur_filename = str(self.equation_file_) + f".out{i}"
|
| 1979 |
+
df = pd.read_csv(cur_filename)
|
| 1980 |
# Rename Complexity column to complexity:
|
| 1981 |
df.rename(
|
| 1982 |
columns={
|
| 1983 |
"Complexity": "complexity",
|
| 1984 |
+
"Loss": "loss",
|
| 1985 |
"Equation": "equation",
|
| 1986 |
},
|
| 1987 |
inplace=True,
|
|
|
|
| 1989 |
|
| 1990 |
all_outputs.append(df)
|
| 1991 |
else:
|
| 1992 |
+
filename = str(self.equation_file_) + ".bkup"
|
| 1993 |
+
if not os.path.exists(filename):
|
| 1994 |
+
filename = str(self.equation_file_)
|
| 1995 |
+
all_outputs = [pd.read_csv(filename)]
|
| 1996 |
all_outputs[-1].rename(
|
| 1997 |
columns={
|
| 1998 |
"Complexity": "complexity",
|
| 1999 |
+
"Loss": "loss",
|
| 2000 |
"Equation": "equation",
|
| 2001 |
},
|
| 2002 |
inplace=True,
|
|
|
|
| 2050 |
|
| 2051 |
ret_outputs = []
|
| 2052 |
|
| 2053 |
+
equation_file_contents = copy.deepcopy(self.equation_file_contents_)
|
| 2054 |
+
|
| 2055 |
+
for output in equation_file_contents:
|
| 2056 |
|
| 2057 |
scores = []
|
| 2058 |
lastMSE = None
|
|
|
|
| 2202 |
)
|
| 2203 |
|
| 2204 |
|
| 2205 |
+
def idx_model_selection(equations: pd.DataFrame, model_selection: str) -> int:
|
| 2206 |
+
"""
|
| 2207 |
+
Return the index of the selected expression, given a dataframe of
|
| 2208 |
+
equations and a model selection.
|
| 2209 |
+
"""
|
| 2210 |
+
if model_selection == "accuracy":
|
| 2211 |
+
chosen_idx = equations["loss"].idxmin()
|
| 2212 |
+
elif model_selection == "best":
|
| 2213 |
+
threshold = 1.5 * equations["loss"].min()
|
| 2214 |
+
filtered_equations = equations.query(f"loss <= {threshold}")
|
| 2215 |
+
chosen_idx = filtered_equations["score"].idxmax()
|
| 2216 |
+
elif model_selection == "score":
|
| 2217 |
+
chosen_idx = equations["score"].idxmax()
|
| 2218 |
+
else:
|
| 2219 |
+
raise NotImplementedError(
|
| 2220 |
+
f"{model_selection} is not a valid model selection strategy."
|
| 2221 |
+
)
|
| 2222 |
+
return chosen_idx
|
| 2223 |
+
|
| 2224 |
+
|
| 2225 |
def _denoise(X, y, Xresampled=None, random_state=None):
|
| 2226 |
"""Denoise the dataset using a Gaussian process"""
|
| 2227 |
from sklearn.gaussian_process import GaussianProcessRegressor
|
|
|
|
| 2267 |
clf, threshold=-np.inf, max_features=select_k_features, prefit=True
|
| 2268 |
)
|
| 2269 |
return selector.get_support(indices=True)
|
| 2270 |
+
|
| 2271 |
+
|
| 2272 |
+
def _csv_filename_to_pkl_filename(csv_filename) -> str:
|
| 2273 |
+
# Assume that the csv filename is of the form "foo.csv"
|
| 2274 |
+
assert str(csv_filename).endswith(".csv")
|
| 2275 |
+
|
| 2276 |
+
dirname = str(os.path.dirname(csv_filename))
|
| 2277 |
+
basename = str(os.path.basename(csv_filename))
|
| 2278 |
+
base = str(os.path.splitext(basename)[0])
|
| 2279 |
+
|
| 2280 |
+
pkl_basename = base + ".pkl"
|
| 2281 |
+
|
| 2282 |
+
return os.path.join(dirname, pkl_basename)
|
pysr/version.py
CHANGED
|
@@ -1,2 +1,2 @@
|
|
| 1 |
-
__version__ = "0.
|
| 2 |
-
__symbolic_regression_jl_version__ = "0.
|
|
|
|
| 1 |
+
__version__ = "0.10.0"
|
| 2 |
+
__symbolic_regression_jl_version__ = "0.10.0"
|
test/test.py
CHANGED
|
@@ -5,7 +5,12 @@ import unittest
|
|
| 5 |
import numpy as np
|
| 6 |
from sklearn import model_selection
|
| 7 |
from pysr import PySRRegressor
|
| 8 |
-
from pysr.sr import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
from pysr.export_latex import to_latex
|
| 10 |
from sklearn.utils.estimator_checks import check_estimator
|
| 11 |
import sympy
|
|
@@ -13,6 +18,7 @@ import pandas as pd
|
|
| 13 |
import warnings
|
| 14 |
import pickle as pkl
|
| 15 |
import tempfile
|
|
|
|
| 16 |
|
| 17 |
DEFAULT_PARAMS = inspect.signature(PySRRegressor.__init__).parameters
|
| 18 |
DEFAULT_NITERATIONS = DEFAULT_PARAMS["niterations"].default
|
|
@@ -136,7 +142,7 @@ class TestPipeline(unittest.TestCase):
|
|
| 136 |
# These tests are flaky, so don't fail test:
|
| 137 |
try:
|
| 138 |
np.testing.assert_almost_equal(
|
| 139 |
-
model.predict(X.copy())[:, 0], X[:, 0] ** 2, decimal=
|
| 140 |
)
|
| 141 |
except AssertionError:
|
| 142 |
print("Error in test_multioutput_weighted_with_callable_temp_equation")
|
|
@@ -145,7 +151,7 @@ class TestPipeline(unittest.TestCase):
|
|
| 145 |
|
| 146 |
try:
|
| 147 |
np.testing.assert_almost_equal(
|
| 148 |
-
model.predict(X.copy())[:, 1], X[:, 1] ** 2, decimal=
|
| 149 |
)
|
| 150 |
except AssertionError:
|
| 151 |
print("Error in test_multioutput_weighted_with_callable_temp_equation")
|
|
@@ -281,6 +287,72 @@ class TestPipeline(unittest.TestCase):
|
|
| 281 |
model.fit(X.values, y.values, Xresampled=Xresampled.values)
|
| 282 |
self.assertLess(np.average((model.predict(X.values) - y.values) ** 2), 1e-4)
|
| 283 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 284 |
|
| 285 |
def manually_create_model(equations, feature_names=None):
|
| 286 |
if feature_names is None:
|
|
@@ -304,7 +376,7 @@ def manually_create_model(equations, feature_names=None):
|
|
| 304 |
model.feature_names_in_ = np.array(feature_names, dtype=object)
|
| 305 |
for i in range(model.nout_):
|
| 306 |
equations[i]["complexity loss equation".split(" ")].to_csv(
|
| 307 |
-
f"equation_file.csv.out{i+1}.bkup"
|
| 308 |
)
|
| 309 |
else:
|
| 310 |
model.equation_file_ = "equation_file.csv"
|
|
@@ -312,7 +384,7 @@ def manually_create_model(equations, feature_names=None):
|
|
| 312 |
model.selection_mask_ = None
|
| 313 |
model.feature_names_in_ = np.array(feature_names, dtype=object)
|
| 314 |
equations["complexity loss equation".split(" ")].to_csv(
|
| 315 |
-
"equation_file.csv.bkup"
|
| 316 |
)
|
| 317 |
|
| 318 |
model.refresh()
|
|
@@ -351,7 +423,21 @@ class TestBest(unittest.TestCase):
|
|
| 351 |
X = self.X
|
| 352 |
y = self.y
|
| 353 |
for f in [self.model.predict, self.equations_.iloc[-1]["lambda_format"]]:
|
| 354 |
-
np.testing.assert_almost_equal(f(X), y, decimal=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 355 |
|
| 356 |
|
| 357 |
class TestFeatureSelection(unittest.TestCase):
|
|
@@ -385,6 +471,20 @@ class TestFeatureSelection(unittest.TestCase):
|
|
| 385 |
class TestMiscellaneous(unittest.TestCase):
|
| 386 |
"""Test miscellaneous functions."""
|
| 387 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 388 |
def test_deprecation(self):
|
| 389 |
"""Ensure that deprecation works as expected.
|
| 390 |
|
|
|
|
| 5 |
import numpy as np
|
| 6 |
from sklearn import model_selection
|
| 7 |
from pysr import PySRRegressor
|
| 8 |
+
from pysr.sr import (
|
| 9 |
+
run_feature_selection,
|
| 10 |
+
_handle_feature_selection,
|
| 11 |
+
_csv_filename_to_pkl_filename,
|
| 12 |
+
idx_model_selection,
|
| 13 |
+
)
|
| 14 |
from pysr.export_latex import to_latex
|
| 15 |
from sklearn.utils.estimator_checks import check_estimator
|
| 16 |
import sympy
|
|
|
|
| 18 |
import warnings
|
| 19 |
import pickle as pkl
|
| 20 |
import tempfile
|
| 21 |
+
from pathlib import Path
|
| 22 |
|
| 23 |
DEFAULT_PARAMS = inspect.signature(PySRRegressor.__init__).parameters
|
| 24 |
DEFAULT_NITERATIONS = DEFAULT_PARAMS["niterations"].default
|
|
|
|
| 142 |
# These tests are flaky, so don't fail test:
|
| 143 |
try:
|
| 144 |
np.testing.assert_almost_equal(
|
| 145 |
+
model.predict(X.copy())[:, 0], X[:, 0] ** 2, decimal=3
|
| 146 |
)
|
| 147 |
except AssertionError:
|
| 148 |
print("Error in test_multioutput_weighted_with_callable_temp_equation")
|
|
|
|
| 151 |
|
| 152 |
try:
|
| 153 |
np.testing.assert_almost_equal(
|
| 154 |
+
model.predict(X.copy())[:, 1], X[:, 1] ** 2, decimal=3
|
| 155 |
)
|
| 156 |
except AssertionError:
|
| 157 |
print("Error in test_multioutput_weighted_with_callable_temp_equation")
|
|
|
|
| 287 |
model.fit(X.values, y.values, Xresampled=Xresampled.values)
|
| 288 |
self.assertLess(np.average((model.predict(X.values) - y.values) ** 2), 1e-4)
|
| 289 |
|
| 290 |
+
def test_load_model(self):
|
| 291 |
+
"""See if we can load a ran model from the equation file."""
|
| 292 |
+
csv_file_data = """
|
| 293 |
+
Complexity,Loss,Equation
|
| 294 |
+
1,0.19951081,"1.9762075"
|
| 295 |
+
3,0.12717344,"(f0 + 1.4724599)"
|
| 296 |
+
4,0.104823045,"pow_abs(2.2683423, cos(f3))\""""
|
| 297 |
+
# Strip the indents:
|
| 298 |
+
csv_file_data = "\n".join([l.strip() for l in csv_file_data.split("\n")])
|
| 299 |
+
|
| 300 |
+
for from_backup in [False, True]:
|
| 301 |
+
rand_dir = Path(tempfile.mkdtemp())
|
| 302 |
+
equation_filename = str(rand_dir / "equation.csv")
|
| 303 |
+
with open(equation_filename + (".bkup" if from_backup else ""), "w") as f:
|
| 304 |
+
f.write(csv_file_data)
|
| 305 |
+
model = PySRRegressor.from_file(
|
| 306 |
+
equation_filename,
|
| 307 |
+
n_features_in=5,
|
| 308 |
+
feature_names_in=["f0", "f1", "f2", "f3", "f4"],
|
| 309 |
+
binary_operators=["+", "*", "/", "-", "^"],
|
| 310 |
+
unary_operators=["cos"],
|
| 311 |
+
)
|
| 312 |
+
X = self.rstate.rand(100, 5)
|
| 313 |
+
y_truth = 2.2683423 ** np.cos(X[:, 3])
|
| 314 |
+
y_test = model.predict(X, 2)
|
| 315 |
+
|
| 316 |
+
np.testing.assert_allclose(y_truth, y_test)
|
| 317 |
+
|
| 318 |
+
def test_load_model_simple(self):
|
| 319 |
+
# Test that we can simply load a model from its equation file.
|
| 320 |
+
y = self.X[:, [0, 1]] ** 2
|
| 321 |
+
model = PySRRegressor(
|
| 322 |
+
# Test that passing a single operator works:
|
| 323 |
+
unary_operators="sq(x) = x^2",
|
| 324 |
+
binary_operators="plus",
|
| 325 |
+
extra_sympy_mappings={"sq": lambda x: x**2},
|
| 326 |
+
**self.default_test_kwargs,
|
| 327 |
+
procs=0,
|
| 328 |
+
denoise=True,
|
| 329 |
+
early_stop_condition="stop_if(loss, complexity) = loss < 0.05 && complexity == 2",
|
| 330 |
+
)
|
| 331 |
+
rand_dir = Path(tempfile.mkdtemp())
|
| 332 |
+
equation_file = rand_dir / "equations.csv"
|
| 333 |
+
model.set_params(temp_equation_file=False)
|
| 334 |
+
model.set_params(equation_file=equation_file)
|
| 335 |
+
model.fit(self.X, y)
|
| 336 |
+
|
| 337 |
+
# lambda functions are removed from the pickling, so we need
|
| 338 |
+
# to pass it during the loading:
|
| 339 |
+
model2 = PySRRegressor.from_file(
|
| 340 |
+
model.equation_file_, extra_sympy_mappings={"sq": lambda x: x**2}
|
| 341 |
+
)
|
| 342 |
+
|
| 343 |
+
np.testing.assert_allclose(model.predict(self.X), model2.predict(self.X))
|
| 344 |
+
|
| 345 |
+
# Try again, but using only the pickle file:
|
| 346 |
+
for file_to_delete in [str(equation_file), str(equation_file) + ".bkup"]:
|
| 347 |
+
if os.path.exists(file_to_delete):
|
| 348 |
+
os.remove(file_to_delete)
|
| 349 |
+
|
| 350 |
+
pickle_file = rand_dir / "equations.pkl"
|
| 351 |
+
model3 = PySRRegressor.from_file(
|
| 352 |
+
model.equation_file_, extra_sympy_mappings={"sq": lambda x: x**2}
|
| 353 |
+
)
|
| 354 |
+
np.testing.assert_allclose(model.predict(self.X), model3.predict(self.X))
|
| 355 |
+
|
| 356 |
|
| 357 |
def manually_create_model(equations, feature_names=None):
|
| 358 |
if feature_names is None:
|
|
|
|
| 376 |
model.feature_names_in_ = np.array(feature_names, dtype=object)
|
| 377 |
for i in range(model.nout_):
|
| 378 |
equations[i]["complexity loss equation".split(" ")].to_csv(
|
| 379 |
+
f"equation_file.csv.out{i+1}.bkup"
|
| 380 |
)
|
| 381 |
else:
|
| 382 |
model.equation_file_ = "equation_file.csv"
|
|
|
|
| 384 |
model.selection_mask_ = None
|
| 385 |
model.feature_names_in_ = np.array(feature_names, dtype=object)
|
| 386 |
equations["complexity loss equation".split(" ")].to_csv(
|
| 387 |
+
"equation_file.csv.bkup"
|
| 388 |
)
|
| 389 |
|
| 390 |
model.refresh()
|
|
|
|
| 423 |
X = self.X
|
| 424 |
y = self.y
|
| 425 |
for f in [self.model.predict, self.equations_.iloc[-1]["lambda_format"]]:
|
| 426 |
+
np.testing.assert_almost_equal(f(X), y, decimal=3)
|
| 427 |
+
|
| 428 |
+
def test_all_selection_strategies(self):
|
| 429 |
+
equations = pd.DataFrame(
|
| 430 |
+
dict(
|
| 431 |
+
loss=[1.0, 0.1, 0.01, 0.001 * 1.4, 0.001],
|
| 432 |
+
score=[0.5, 1.0, 0.5, 0.5, 0.3],
|
| 433 |
+
)
|
| 434 |
+
)
|
| 435 |
+
idx_accuracy = idx_model_selection(equations, "accuracy")
|
| 436 |
+
self.assertEqual(idx_accuracy, 4)
|
| 437 |
+
idx_best = idx_model_selection(equations, "best")
|
| 438 |
+
self.assertEqual(idx_best, 3)
|
| 439 |
+
idx_score = idx_model_selection(equations, "score")
|
| 440 |
+
self.assertEqual(idx_score, 1)
|
| 441 |
|
| 442 |
|
| 443 |
class TestFeatureSelection(unittest.TestCase):
|
|
|
|
| 471 |
class TestMiscellaneous(unittest.TestCase):
|
| 472 |
"""Test miscellaneous functions."""
|
| 473 |
|
| 474 |
+
def test_csv_to_pkl_conversion(self):
|
| 475 |
+
"""Test that csv filename to pkl filename works as expected."""
|
| 476 |
+
tmpdir = Path(tempfile.mkdtemp())
|
| 477 |
+
equation_file = tmpdir / "equations.389479384.28378374.csv"
|
| 478 |
+
expected_pkl_file = tmpdir / "equations.389479384.28378374.pkl"
|
| 479 |
+
|
| 480 |
+
# First, test inputting the paths:
|
| 481 |
+
test_pkl_file = _csv_filename_to_pkl_filename(equation_file)
|
| 482 |
+
self.assertEqual(test_pkl_file, str(expected_pkl_file))
|
| 483 |
+
|
| 484 |
+
# Next, test inputting the strings.
|
| 485 |
+
test_pkl_file = _csv_filename_to_pkl_filename(str(equation_file))
|
| 486 |
+
self.assertEqual(test_pkl_file, str(expected_pkl_file))
|
| 487 |
+
|
| 488 |
def test_deprecation(self):
|
| 489 |
"""Ensure that deprecation works as expected.
|
| 490 |
|
test/test_jax.py
CHANGED
|
@@ -34,13 +34,13 @@ class TestJAX(unittest.TestCase):
|
|
| 34 |
equations = pd.DataFrame(
|
| 35 |
{
|
| 36 |
"Equation": ["1.0", "cos(x1)", "square(cos(x1))"],
|
| 37 |
-
"
|
| 38 |
"Complexity": [1, 2, 3],
|
| 39 |
}
|
| 40 |
)
|
| 41 |
|
| 42 |
-
equations["Complexity
|
| 43 |
-
"equation_file.csv.bkup"
|
| 44 |
)
|
| 45 |
|
| 46 |
model.refresh(checkpoint_file="equation_file.csv")
|
|
@@ -49,7 +49,7 @@ class TestJAX(unittest.TestCase):
|
|
| 49 |
np.testing.assert_almost_equal(
|
| 50 |
np.array(jformat["callable"](jnp.array(X), jformat["parameters"])),
|
| 51 |
np.square(np.cos(X.values[:, 1])), # Select feature 1
|
| 52 |
-
decimal=
|
| 53 |
)
|
| 54 |
|
| 55 |
def test_pipeline(self):
|
|
@@ -61,13 +61,13 @@ class TestJAX(unittest.TestCase):
|
|
| 61 |
equations = pd.DataFrame(
|
| 62 |
{
|
| 63 |
"Equation": ["1.0", "cos(x1)", "square(cos(x1))"],
|
| 64 |
-
"
|
| 65 |
"Complexity": [1, 2, 3],
|
| 66 |
}
|
| 67 |
)
|
| 68 |
|
| 69 |
-
equations["Complexity
|
| 70 |
-
"equation_file.csv.bkup"
|
| 71 |
)
|
| 72 |
|
| 73 |
model.refresh(checkpoint_file="equation_file.csv")
|
|
@@ -76,7 +76,7 @@ class TestJAX(unittest.TestCase):
|
|
| 76 |
np.testing.assert_almost_equal(
|
| 77 |
np.array(jformat["callable"](jnp.array(X), jformat["parameters"])),
|
| 78 |
np.square(np.cos(X[:, 1])), # Select feature 1
|
| 79 |
-
decimal=
|
| 80 |
)
|
| 81 |
|
| 82 |
def test_feature_selection_custom_operators(self):
|
|
@@ -110,5 +110,5 @@ class TestJAX(unittest.TestCase):
|
|
| 110 |
np_output = np_prediction(X.values)
|
| 111 |
jax_output = jax_prediction(X.values)
|
| 112 |
|
| 113 |
-
np.testing.assert_almost_equal(y.values, np_output, decimal=
|
| 114 |
-
np.testing.assert_almost_equal(y.values, jax_output, decimal=
|
|
|
|
| 34 |
equations = pd.DataFrame(
|
| 35 |
{
|
| 36 |
"Equation": ["1.0", "cos(x1)", "square(cos(x1))"],
|
| 37 |
+
"Loss": [1.0, 0.1, 1e-5],
|
| 38 |
"Complexity": [1, 2, 3],
|
| 39 |
}
|
| 40 |
)
|
| 41 |
|
| 42 |
+
equations["Complexity Loss Equation".split(" ")].to_csv(
|
| 43 |
+
"equation_file.csv.bkup"
|
| 44 |
)
|
| 45 |
|
| 46 |
model.refresh(checkpoint_file="equation_file.csv")
|
|
|
|
| 49 |
np.testing.assert_almost_equal(
|
| 50 |
np.array(jformat["callable"](jnp.array(X), jformat["parameters"])),
|
| 51 |
np.square(np.cos(X.values[:, 1])), # Select feature 1
|
| 52 |
+
decimal=3,
|
| 53 |
)
|
| 54 |
|
| 55 |
def test_pipeline(self):
|
|
|
|
| 61 |
equations = pd.DataFrame(
|
| 62 |
{
|
| 63 |
"Equation": ["1.0", "cos(x1)", "square(cos(x1))"],
|
| 64 |
+
"Loss": [1.0, 0.1, 1e-5],
|
| 65 |
"Complexity": [1, 2, 3],
|
| 66 |
}
|
| 67 |
)
|
| 68 |
|
| 69 |
+
equations["Complexity Loss Equation".split(" ")].to_csv(
|
| 70 |
+
"equation_file.csv.bkup"
|
| 71 |
)
|
| 72 |
|
| 73 |
model.refresh(checkpoint_file="equation_file.csv")
|
|
|
|
| 76 |
np.testing.assert_almost_equal(
|
| 77 |
np.array(jformat["callable"](jnp.array(X), jformat["parameters"])),
|
| 78 |
np.square(np.cos(X[:, 1])), # Select feature 1
|
| 79 |
+
decimal=3,
|
| 80 |
)
|
| 81 |
|
| 82 |
def test_feature_selection_custom_operators(self):
|
|
|
|
| 110 |
np_output = np_prediction(X.values)
|
| 111 |
jax_output = jax_prediction(X.values)
|
| 112 |
|
| 113 |
+
np.testing.assert_almost_equal(y.values, np_output, decimal=3)
|
| 114 |
+
np.testing.assert_almost_equal(y.values, jax_output, decimal=3)
|
test/test_torch.py
CHANGED
|
@@ -49,13 +49,13 @@ class TestTorch(unittest.TestCase):
|
|
| 49 |
equations = pd.DataFrame(
|
| 50 |
{
|
| 51 |
"Equation": ["1.0", "cos(x1)", "square(cos(x1))"],
|
| 52 |
-
"
|
| 53 |
"Complexity": [1, 2, 3],
|
| 54 |
}
|
| 55 |
)
|
| 56 |
|
| 57 |
-
equations["Complexity
|
| 58 |
-
"equation_file.csv.bkup"
|
| 59 |
)
|
| 60 |
|
| 61 |
model.refresh(checkpoint_file="equation_file.csv")
|
|
@@ -82,13 +82,13 @@ class TestTorch(unittest.TestCase):
|
|
| 82 |
equations = pd.DataFrame(
|
| 83 |
{
|
| 84 |
"Equation": ["1.0", "cos(x1)", "square(cos(x1))"],
|
| 85 |
-
"
|
| 86 |
"Complexity": [1, 2, 3],
|
| 87 |
}
|
| 88 |
)
|
| 89 |
|
| 90 |
-
equations["Complexity
|
| 91 |
-
"equation_file.csv.bkup"
|
| 92 |
)
|
| 93 |
|
| 94 |
model.refresh(checkpoint_file="equation_file.csv")
|
|
@@ -133,13 +133,13 @@ class TestTorch(unittest.TestCase):
|
|
| 133 |
equations = pd.DataFrame(
|
| 134 |
{
|
| 135 |
"Equation": ["1.0", "mycustomoperator(x1)"],
|
| 136 |
-
"
|
| 137 |
"Complexity": [1, 2],
|
| 138 |
}
|
| 139 |
)
|
| 140 |
|
| 141 |
-
equations["Complexity
|
| 142 |
-
"equation_file_custom_operator.csv.bkup"
|
| 143 |
)
|
| 144 |
|
| 145 |
model.set_params(
|
|
|
|
| 49 |
equations = pd.DataFrame(
|
| 50 |
{
|
| 51 |
"Equation": ["1.0", "cos(x1)", "square(cos(x1))"],
|
| 52 |
+
"Loss": [1.0, 0.1, 1e-5],
|
| 53 |
"Complexity": [1, 2, 3],
|
| 54 |
}
|
| 55 |
)
|
| 56 |
|
| 57 |
+
equations["Complexity Loss Equation".split(" ")].to_csv(
|
| 58 |
+
"equation_file.csv.bkup"
|
| 59 |
)
|
| 60 |
|
| 61 |
model.refresh(checkpoint_file="equation_file.csv")
|
|
|
|
| 82 |
equations = pd.DataFrame(
|
| 83 |
{
|
| 84 |
"Equation": ["1.0", "cos(x1)", "square(cos(x1))"],
|
| 85 |
+
"Loss": [1.0, 0.1, 1e-5],
|
| 86 |
"Complexity": [1, 2, 3],
|
| 87 |
}
|
| 88 |
)
|
| 89 |
|
| 90 |
+
equations["Complexity Loss Equation".split(" ")].to_csv(
|
| 91 |
+
"equation_file.csv.bkup"
|
| 92 |
)
|
| 93 |
|
| 94 |
model.refresh(checkpoint_file="equation_file.csv")
|
|
|
|
| 133 |
equations = pd.DataFrame(
|
| 134 |
{
|
| 135 |
"Equation": ["1.0", "mycustomoperator(x1)"],
|
| 136 |
+
"Loss": [1.0, 0.1],
|
| 137 |
"Complexity": [1, 2],
|
| 138 |
}
|
| 139 |
)
|
| 140 |
|
| 141 |
+
equations["Complexity Loss Equation".split(" ")].to_csv(
|
| 142 |
+
"equation_file_custom_operator.csv.bkup"
|
| 143 |
)
|
| 144 |
|
| 145 |
model.set_params(
|