MilesCranmer commited on
Commit
0e83f02
·
1 Parent(s): 22861f2

Expand documentation on customization

Browse files
Files changed (1) hide show
  1. docs/backend.md +2 -1
docs/backend.md CHANGED
@@ -22,7 +22,8 @@ git clone https://github.com/MilesCranmer/SymbolicRegression.jl
22
  - [`src/CheckConstraints.jl`](https://github.com/MilesCranmer/SymbolicRegression.jl/blob/master/src/CheckConstraints.jl), particularly the function `check_constraints`. This function checks whether a given expression satisfies constraints, such as having a complexity lower than `maxsize`, and whether it contains any forbidden nestings of functions.
23
  - [`src/Options.jl`](https://github.com/MilesCranmer/SymbolicRegression.jl/blob/master/src/Options.jl), as well as the struct definition in [`src/OptionsStruct.jl`](https://github.com/MilesCranmer/SymbolicRegression.jl/blob/master/src/OptionsStruct.jl). This file specifies all the options used in the search: an instance of `Options` is typically available throughout every function in `SymbolicRegression.jl`. If you add new functionality to the backend, and wish to make it parameterizable (including from PySR), you should specify it in the options.
24
  - For reference, the main loop itself is found in the `EquationSearch` function inside [`src/SymbolicRegression.jl`](https://github.com/MilesCranmer/SymbolicRegression.jl/blob/master/src/SymbolicRegression.jl).
25
- 3. Specify the directory of `SymbolicRegression.jl` to PySR by setting `julia_project` in the `PySRRegressor` object. Note that it will automatically update your project by default; to turn this off, set `update=False`.
 
26
 
27
  If you get comfortable enough with the backend, you might consider using the Julia package directly: the API is given on the [SymbolicRegression.jl documentation](https://astroautomata.com/SymbolicRegression.jl/dev/).
28
 
 
22
  - [`src/CheckConstraints.jl`](https://github.com/MilesCranmer/SymbolicRegression.jl/blob/master/src/CheckConstraints.jl), particularly the function `check_constraints`. This function checks whether a given expression satisfies constraints, such as having a complexity lower than `maxsize`, and whether it contains any forbidden nestings of functions.
23
  - [`src/Options.jl`](https://github.com/MilesCranmer/SymbolicRegression.jl/blob/master/src/Options.jl), as well as the struct definition in [`src/OptionsStruct.jl`](https://github.com/MilesCranmer/SymbolicRegression.jl/blob/master/src/OptionsStruct.jl). This file specifies all the options used in the search: an instance of `Options` is typically available throughout every function in `SymbolicRegression.jl`. If you add new functionality to the backend, and wish to make it parameterizable (including from PySR), you should specify it in the options.
24
  - For reference, the main loop itself is found in the `EquationSearch` function inside [`src/SymbolicRegression.jl`](https://github.com/MilesCranmer/SymbolicRegression.jl/blob/master/src/SymbolicRegression.jl).
25
+ 3. Specify the directory of `SymbolicRegression.jl` to PySR by setting `julia_project` in the `PySRRegressor` object, and run `.fit` when you're ready. That's it! No compilation or build steps required.
26
+ - Note that it will automatically update your project by default; to turn this off, set `update=False`.
27
 
28
  If you get comfortable enough with the backend, you might consider using the Julia package directly: the API is given on the [SymbolicRegression.jl documentation](https://astroautomata.com/SymbolicRegression.jl/dev/).
29