MilesCranmer commited on
Commit
162cbb5
1 Parent(s): 90224ea

Clarify underlying algorithm in PySR

Browse files
Files changed (1) hide show
  1. README.md +2 -3
README.md CHANGED
@@ -9,7 +9,7 @@ https://user-images.githubusercontent.com/7593028/188328887-1b6cda72-2f41-439e-a
9
  </div>
10
 
11
 
12
- PySR is built on an extremely optimized pure-Julia backend, and uses regularized evolution, simulated annealing, and gradient-free optimization to search for equations that fit your data.
13
 
14
  <div align="center">
15
 
@@ -39,8 +39,7 @@ If you've finished a project with PySR, please submit a PR to showcase your work
39
 
40
  </div>
41
 
42
- Check out [SymbolicRegression.jl](https://github.com/MilesCranmer/SymbolicRegression.jl) for
43
- the pure-Julia backend of this package.
44
 
45
  Symbolic regression is a very interpretable machine learning algorithm
46
  for low-dimensional problems: these tools search equation space
 
9
  </div>
10
 
11
 
12
+ PySR uses evolutionary algorithms to search for symbolic expressions which optimize a particular objective.
13
 
14
  <div align="center">
15
 
 
39
 
40
  </div>
41
 
42
+ PySR is built on an extremely optimized pure-Julia backend: [SymbolicRegression.jl](https://github.com/MilesCranmer/SymbolicRegression.jl).
 
43
 
44
  Symbolic regression is a very interpretable machine learning algorithm
45
  for low-dimensional problems: these tools search equation space