Spaces:
Sleeping
Sleeping
tttc3
commited on
Commit
·
3821242
1
Parent(s):
fbb7cf7
Cleaned test and docstring
Browse files- pysr/sr.py +0 -6
- test/test_torch.py +10 -9
pysr/sr.py
CHANGED
|
@@ -1427,12 +1427,6 @@ class PySRRegressor(BaseEstimator, RegressorMixin, MultiOutputMixin):
|
|
| 1427 |
If :param`X` is a pandas dataframe, the column names will be used.
|
| 1428 |
If variable_names are specified
|
| 1429 |
|
| 1430 |
-
from_equation_file : bool, default=False
|
| 1431 |
-
Allows model to be initialized/fit from a previous run that has
|
| 1432 |
-
been saved to a file. If true, a value of y still needs to be
|
| 1433 |
-
passed such that `nout_` can be determined, however, the values of
|
| 1434 |
-
y are irrelevant and can be all zeros.
|
| 1435 |
-
|
| 1436 |
Returns
|
| 1437 |
-------
|
| 1438 |
self : object
|
|
|
|
| 1427 |
If :param`X` is a pandas dataframe, the column names will be used.
|
| 1428 |
If variable_names are specified
|
| 1429 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1430 |
Returns
|
| 1431 |
-------
|
| 1432 |
self : object
|
test/test_torch.py
CHANGED
|
@@ -23,6 +23,16 @@ class TestTorch(unittest.TestCase):
|
|
| 23 |
)
|
| 24 |
|
| 25 |
def test_pipeline_pandas(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
equations = pd.DataFrame(
|
| 27 |
{
|
| 28 |
"Equation": ["1.0", "cos(x1)", "square(cos(x1))"],
|
|
@@ -35,15 +45,6 @@ class TestTorch(unittest.TestCase):
|
|
| 35 |
"equation_file.csv.bkup", sep="|"
|
| 36 |
)
|
| 37 |
|
| 38 |
-
X = pd.DataFrame(np.random.randn(100, 10))
|
| 39 |
-
y = np.ones(X.shape[0])
|
| 40 |
-
model = PySRRegressor(
|
| 41 |
-
max_evals=10000,
|
| 42 |
-
model_selection="accuracy",
|
| 43 |
-
extra_sympy_mappings={},
|
| 44 |
-
output_torch_format=True,
|
| 45 |
-
)
|
| 46 |
-
model.fit(X, y)
|
| 47 |
model.refresh(checkpoint_file="equation_file.csv")
|
| 48 |
tformat = model.pytorch()
|
| 49 |
self.assertEqual(str(tformat), "_SingleSymPyModule(expression=cos(x1)**2)")
|
|
|
|
| 23 |
)
|
| 24 |
|
| 25 |
def test_pipeline_pandas(self):
|
| 26 |
+
X = pd.DataFrame(np.random.randn(100, 10))
|
| 27 |
+
y = np.ones(X.shape[0])
|
| 28 |
+
model = PySRRegressor(
|
| 29 |
+
max_evals=10000,
|
| 30 |
+
model_selection="accuracy",
|
| 31 |
+
extra_sympy_mappings={},
|
| 32 |
+
output_torch_format=True,
|
| 33 |
+
)
|
| 34 |
+
model.fit(X, y)
|
| 35 |
+
|
| 36 |
equations = pd.DataFrame(
|
| 37 |
{
|
| 38 |
"Equation": ["1.0", "cos(x1)", "square(cos(x1))"],
|
|
|
|
| 45 |
"equation_file.csv.bkup", sep="|"
|
| 46 |
)
|
| 47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
model.refresh(checkpoint_file="equation_file.csv")
|
| 49 |
tformat = model.pytorch()
|
| 50 |
self.assertEqual(str(tformat), "_SingleSymPyModule(expression=cos(x1)**2)")
|