Spaces:
Sleeping
Sleeping
MilesCranmer
commited on
Commit
•
436d629
1
Parent(s):
7f2ee62
Fix mutable default arguments
Browse files- pysr/sr.py +18 -6
- setup.py +1 -1
pysr/sr.py
CHANGED
@@ -56,8 +56,8 @@ sympy_mappings = {
|
|
56 |
}
|
57 |
|
58 |
def pysr(X=None, y=None, weights=None,
|
59 |
-
binary_operators=
|
60 |
-
unary_operators=
|
61 |
procs=4,
|
62 |
loss='L2DistLoss()',
|
63 |
populations=None,
|
@@ -83,7 +83,7 @@ def pysr(X=None, y=None, weights=None,
|
|
83 |
weightSimplify=0.01,
|
84 |
perturbationFactor=1.0,
|
85 |
timeout=None,
|
86 |
-
extra_sympy_mappings=
|
87 |
equation_file=None,
|
88 |
test='simple1',
|
89 |
verbosity=1e9,
|
@@ -91,12 +91,12 @@ def pysr(X=None, y=None, weights=None,
|
|
91 |
maxsize=20,
|
92 |
fast_cycle=False,
|
93 |
maxdepth=None,
|
94 |
-
variable_names=
|
95 |
batching=False,
|
96 |
batchSize=50,
|
97 |
select_k_features=None,
|
98 |
warmupMaxsizeBy=0.0,
|
99 |
-
constraints=
|
100 |
useFrequency=False,
|
101 |
tempdir=None,
|
102 |
delete_tempfiles=True,
|
@@ -125,8 +125,9 @@ def pysr(X=None, y=None, weights=None,
|
|
125 |
:param weights: np.ndarray, 1D array. Each row is how to weight the
|
126 |
mean-square-error loss on weights.
|
127 |
:param binary_operators: list, List of strings giving the binary operators
|
128 |
-
in Julia's Base.
|
129 |
:param unary_operators: list, Same but for operators taking a single scalar.
|
|
|
130 |
:param procs: int, Number of processes (=number of populations running).
|
131 |
:param loss: str, String of Julia code specifying the loss function.
|
132 |
Can either be a loss from LossFunctions.jl, or your own
|
@@ -227,6 +228,17 @@ def pysr(X=None, y=None, weights=None,
|
|
227 |
(as strings).
|
228 |
|
229 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
assert warmupMaxsize == None, "warmupMaxsize is deprecated. Use warmupMaxsizeBy and give a fraction of time."
|
231 |
if nrestarts != None:
|
232 |
optimizer_nrestarts = nrestarts
|
|
|
56 |
}
|
57 |
|
58 |
def pysr(X=None, y=None, weights=None,
|
59 |
+
binary_operators=None,
|
60 |
+
unary_operators=None,
|
61 |
procs=4,
|
62 |
loss='L2DistLoss()',
|
63 |
populations=None,
|
|
|
83 |
weightSimplify=0.01,
|
84 |
perturbationFactor=1.0,
|
85 |
timeout=None,
|
86 |
+
extra_sympy_mappings=None,
|
87 |
equation_file=None,
|
88 |
test='simple1',
|
89 |
verbosity=1e9,
|
|
|
91 |
maxsize=20,
|
92 |
fast_cycle=False,
|
93 |
maxdepth=None,
|
94 |
+
variable_names=None,
|
95 |
batching=False,
|
96 |
batchSize=50,
|
97 |
select_k_features=None,
|
98 |
warmupMaxsizeBy=0.0,
|
99 |
+
constraints=None,
|
100 |
useFrequency=False,
|
101 |
tempdir=None,
|
102 |
delete_tempfiles=True,
|
|
|
125 |
:param weights: np.ndarray, 1D array. Each row is how to weight the
|
126 |
mean-square-error loss on weights.
|
127 |
:param binary_operators: list, List of strings giving the binary operators
|
128 |
+
in Julia's Base. Default is ["plus", "mult"].
|
129 |
:param unary_operators: list, Same but for operators taking a single scalar.
|
130 |
+
Default is ["cos", "exp", "sin"].
|
131 |
:param procs: int, Number of processes (=number of populations running).
|
132 |
:param loss: str, String of Julia code specifying the loss function.
|
133 |
Can either be a loss from LossFunctions.jl, or your own
|
|
|
228 |
(as strings).
|
229 |
|
230 |
"""
|
231 |
+
if binary_operators is None:
|
232 |
+
binary_operators = ["plus", "mult"]
|
233 |
+
if unary_operators is None:
|
234 |
+
unary_operators = ["cos", "exp", "sin"]
|
235 |
+
if extra_sympy_mappings is None:
|
236 |
+
extra_sympy_mappings = {}
|
237 |
+
if variable_names is None:
|
238 |
+
variable_names = []
|
239 |
+
if constraints is None:
|
240 |
+
constraints = {}
|
241 |
+
|
242 |
assert warmupMaxsize == None, "warmupMaxsize is deprecated. Use warmupMaxsizeBy and give a fraction of time."
|
243 |
if nrestarts != None:
|
244 |
optimizer_nrestarts = nrestarts
|
setup.py
CHANGED
@@ -5,7 +5,7 @@ with open("README.md", "r") as fh:
|
|
5 |
|
6 |
setuptools.setup(
|
7 |
name="pysr", # Replace with your own username
|
8 |
-
version="0.5.13-
|
9 |
author="Miles Cranmer",
|
10 |
author_email="[email protected]",
|
11 |
description="Simple and efficient symbolic regression",
|
|
|
5 |
|
6 |
setuptools.setup(
|
7 |
name="pysr", # Replace with your own username
|
8 |
+
version="0.5.13-2",
|
9 |
author="Miles Cranmer",
|
10 |
author_email="[email protected]",
|
11 |
description="Simple and efficient symbolic regression",
|