Spaces:
Sleeping
Sleeping
MilesCranmer
commited on
Commit
•
4abcbfe
1
Parent(s):
be36d4a
Fix issue with torch imported before Julia init
Browse files- test/test_torch.py +4 -10
test/test_torch.py
CHANGED
@@ -2,6 +2,10 @@ import unittest
|
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
from pysr import sympy2torch, PySRRegressor
|
|
|
|
|
|
|
|
|
5 |
import sympy
|
6 |
|
7 |
|
@@ -13,8 +17,6 @@ class TestTorch(unittest.TestCase):
|
|
13 |
x, y, z = sympy.symbols("x y z")
|
14 |
cosx = 1.0 * sympy.cos(x) + y
|
15 |
|
16 |
-
import torch
|
17 |
-
|
18 |
X = torch.tensor(np.random.randn(1000, 3))
|
19 |
true = 1.0 * torch.cos(X[:, 0]) + X[:, 1]
|
20 |
torch_module = sympy2torch(cosx, [x, y, z])
|
@@ -49,7 +51,6 @@ class TestTorch(unittest.TestCase):
|
|
49 |
model.refresh(checkpoint_file="equation_file.csv")
|
50 |
tformat = model.pytorch()
|
51 |
self.assertEqual(str(tformat), "_SingleSymPyModule(expression=cos(x1)**2)")
|
52 |
-
import torch
|
53 |
|
54 |
np.testing.assert_almost_equal(
|
55 |
tformat(torch.tensor(X.values)).detach().numpy(),
|
@@ -85,8 +86,6 @@ class TestTorch(unittest.TestCase):
|
|
85 |
tformat = model.pytorch()
|
86 |
self.assertEqual(str(tformat), "_SingleSymPyModule(expression=cos(x1)**2)")
|
87 |
|
88 |
-
import torch
|
89 |
-
|
90 |
np.testing.assert_almost_equal(
|
91 |
tformat(torch.tensor(X)).detach().numpy(),
|
92 |
np.square(np.cos(X[:, 1])), # 2nd feature
|
@@ -99,8 +98,6 @@ class TestTorch(unittest.TestCase):
|
|
99 |
|
100 |
module = sympy2torch(expression, [x, y, z])
|
101 |
|
102 |
-
import torch
|
103 |
-
|
104 |
X = torch.rand(100, 3).float() * 10
|
105 |
|
106 |
true_out = (
|
@@ -135,8 +132,6 @@ class TestTorch(unittest.TestCase):
|
|
135 |
"equation_file_custom_operator.csv.bkup", sep="|"
|
136 |
)
|
137 |
|
138 |
-
import torch
|
139 |
-
|
140 |
model.set_params(
|
141 |
equation_file="equation_file_custom_operator.csv",
|
142 |
extra_sympy_mappings={"mycustomoperator": sympy.sin},
|
@@ -168,7 +163,6 @@ class TestTorch(unittest.TestCase):
|
|
168 |
torch_module = model.pytorch()
|
169 |
|
170 |
np_output = model.predict(X.values)
|
171 |
-
import torch
|
172 |
|
173 |
torch_output = torch_module(torch.tensor(X.values)).detach().numpy()
|
174 |
|
|
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
from pysr import sympy2torch, PySRRegressor
|
5 |
+
# Need to initialize Julia before importing torch...
|
6 |
+
from pysr.julia_helpers import init_julia
|
7 |
+
Main = init_julia()
|
8 |
+
import torch
|
9 |
import sympy
|
10 |
|
11 |
|
|
|
17 |
x, y, z = sympy.symbols("x y z")
|
18 |
cosx = 1.0 * sympy.cos(x) + y
|
19 |
|
|
|
|
|
20 |
X = torch.tensor(np.random.randn(1000, 3))
|
21 |
true = 1.0 * torch.cos(X[:, 0]) + X[:, 1]
|
22 |
torch_module = sympy2torch(cosx, [x, y, z])
|
|
|
51 |
model.refresh(checkpoint_file="equation_file.csv")
|
52 |
tformat = model.pytorch()
|
53 |
self.assertEqual(str(tformat), "_SingleSymPyModule(expression=cos(x1)**2)")
|
|
|
54 |
|
55 |
np.testing.assert_almost_equal(
|
56 |
tformat(torch.tensor(X.values)).detach().numpy(),
|
|
|
86 |
tformat = model.pytorch()
|
87 |
self.assertEqual(str(tformat), "_SingleSymPyModule(expression=cos(x1)**2)")
|
88 |
|
|
|
|
|
89 |
np.testing.assert_almost_equal(
|
90 |
tformat(torch.tensor(X)).detach().numpy(),
|
91 |
np.square(np.cos(X[:, 1])), # 2nd feature
|
|
|
98 |
|
99 |
module = sympy2torch(expression, [x, y, z])
|
100 |
|
|
|
|
|
101 |
X = torch.rand(100, 3).float() * 10
|
102 |
|
103 |
true_out = (
|
|
|
132 |
"equation_file_custom_operator.csv.bkup", sep="|"
|
133 |
)
|
134 |
|
|
|
|
|
135 |
model.set_params(
|
136 |
equation_file="equation_file_custom_operator.csv",
|
137 |
extra_sympy_mappings={"mycustomoperator": sympy.sin},
|
|
|
163 |
torch_module = model.pytorch()
|
164 |
|
165 |
np_output = model.predict(X.values)
|
|
|
166 |
|
167 |
torch_output = torch_module(torch.tensor(X.values)).detach().numpy()
|
168 |
|