tttc3 commited on
Commit
4b56660
1 Parent(s): 19d80b0

Supress progress output for tests

Browse files
Files changed (3) hide show
  1. test/test.py +2 -2
  2. test/test_jax.py +6 -2
  3. test/test_torch.py +4 -0
test/test.py CHANGED
@@ -1,12 +1,10 @@
1
  import inspect
2
  import unittest
3
- from unittest.mock import patch
4
  import numpy as np
5
  from pysr import PySRRegressor
6
  from pysr.sr import run_feature_selection, _handle_feature_selection
7
  from sklearn.utils.estimator_checks import check_estimator
8
  import sympy
9
- from sympy import lambdify
10
  import pandas as pd
11
  import warnings
12
 
@@ -22,6 +20,7 @@ class TestPipeline(unittest.TestCase):
22
  inspect.signature(PySRRegressor.__init__).parameters["populations"].default
23
  )
24
  self.default_test_kwargs = dict(
 
25
  model_selection="accuracy",
26
  niterations=default_niterations * 2,
27
  populations=default_populations * 2,
@@ -235,6 +234,7 @@ class TestBest(unittest.TestCase):
235
  self.X = self.rstate.randn(10, 2)
236
  self.y = np.cos(self.X[:, 0]) ** 2
237
  self.model = PySRRegressor(
 
238
  niterations=1,
239
  extra_sympy_mappings={},
240
  output_jax_format=False,
 
1
  import inspect
2
  import unittest
 
3
  import numpy as np
4
  from pysr import PySRRegressor
5
  from pysr.sr import run_feature_selection, _handle_feature_selection
6
  from sklearn.utils.estimator_checks import check_estimator
7
  import sympy
 
8
  import pandas as pd
9
  import warnings
10
 
 
20
  inspect.signature(PySRRegressor.__init__).parameters["populations"].default
21
  )
22
  self.default_test_kwargs = dict(
23
+ progress=False,
24
  model_selection="accuracy",
25
  niterations=default_niterations * 2,
26
  populations=default_populations * 2,
 
234
  self.X = self.rstate.randn(10, 2)
235
  self.y = np.cos(self.X[:, 0]) ** 2
236
  self.model = PySRRegressor(
237
+ progress=False,
238
  niterations=1,
239
  extra_sympy_mappings={},
240
  output_jax_format=False,
test/test_jax.py CHANGED
@@ -25,6 +25,7 @@ class TestJAX(unittest.TestCase):
25
  X = pd.DataFrame(np.random.randn(100, 10))
26
  y = np.ones(X.shape[0])
27
  model = PySRRegressor(
 
28
  max_evals=10000,
29
  output_jax_format=True,
30
  )
@@ -54,7 +55,7 @@ class TestJAX(unittest.TestCase):
54
  def test_pipeline(self):
55
  X = np.random.randn(100, 10)
56
  y = np.ones(X.shape[0])
57
- model = PySRRegressor(max_evals=10000, output_jax_format=True)
58
  model.fit(X, y)
59
 
60
  equations = pd.DataFrame(
@@ -83,7 +84,10 @@ class TestJAX(unittest.TestCase):
83
  y = X["k15"] ** 2 + np.cos(X["k20"])
84
 
85
  model = PySRRegressor(
86
- unary_operators=["cos"], select_k_features=3, early_stop_condition=1e-5
 
 
 
87
  )
88
  model.fit(X.values, y.values)
89
  f, parameters = model.jax().values()
 
25
  X = pd.DataFrame(np.random.randn(100, 10))
26
  y = np.ones(X.shape[0])
27
  model = PySRRegressor(
28
+ progress=False,
29
  max_evals=10000,
30
  output_jax_format=True,
31
  )
 
55
  def test_pipeline(self):
56
  X = np.random.randn(100, 10)
57
  y = np.ones(X.shape[0])
58
+ model = PySRRegressor(progress=False, max_evals=10000, output_jax_format=True)
59
  model.fit(X, y)
60
 
61
  equations = pd.DataFrame(
 
84
  y = X["k15"] ** 2 + np.cos(X["k20"])
85
 
86
  model = PySRRegressor(
87
+ progress=False,
88
+ unary_operators=["cos"],
89
+ select_k_features=3,
90
+ early_stop_condition=1e-5,
91
  )
92
  model.fit(X.values, y.values)
93
  f, parameters = model.jax().values()
test/test_torch.py CHANGED
@@ -26,6 +26,7 @@ class TestTorch(unittest.TestCase):
26
  X = pd.DataFrame(np.random.randn(100, 10))
27
  y = np.ones(X.shape[0])
28
  model = PySRRegressor(
 
29
  max_evals=10000,
30
  model_selection="accuracy",
31
  extra_sympy_mappings={},
@@ -60,6 +61,7 @@ class TestTorch(unittest.TestCase):
60
  X = np.random.randn(100, 10)
61
  y = np.ones(X.shape[0])
62
  model = PySRRegressor(
 
63
  max_evals=10000,
64
  model_selection="accuracy",
65
  output_torch_format=True,
@@ -114,6 +116,7 @@ class TestTorch(unittest.TestCase):
114
  X = np.random.randn(100, 3)
115
  y = np.ones(X.shape[0])
116
  model = PySRRegressor(
 
117
  max_evals=10000,
118
  model_selection="accuracy",
119
  output_torch_format=True,
@@ -156,6 +159,7 @@ class TestTorch(unittest.TestCase):
156
  y = X["k15"] ** 2 + np.cos(X["k20"])
157
 
158
  model = PySRRegressor(
 
159
  unary_operators=["cos"],
160
  select_k_features=3,
161
  early_stop_condition=1e-5,
 
26
  X = pd.DataFrame(np.random.randn(100, 10))
27
  y = np.ones(X.shape[0])
28
  model = PySRRegressor(
29
+ progress=False,
30
  max_evals=10000,
31
  model_selection="accuracy",
32
  extra_sympy_mappings={},
 
61
  X = np.random.randn(100, 10)
62
  y = np.ones(X.shape[0])
63
  model = PySRRegressor(
64
+ progress=False,
65
  max_evals=10000,
66
  model_selection="accuracy",
67
  output_torch_format=True,
 
116
  X = np.random.randn(100, 3)
117
  y = np.ones(X.shape[0])
118
  model = PySRRegressor(
119
+ progress=False,
120
  max_evals=10000,
121
  model_selection="accuracy",
122
  output_torch_format=True,
 
159
  y = X["k15"] ** 2 + np.cos(X["k20"])
160
 
161
  model = PySRRegressor(
162
+ progress=False,
163
  unary_operators=["cos"],
164
  select_k_features=3,
165
  early_stop_condition=1e-5,