Spaces:
Sleeping
Sleeping
MilesCranmer
commited on
Commit
•
4c9fe98
1
Parent(s):
fb2f513
Add early stop conditions to force speed testing
Browse files- test/test.py +25 -5
test/test.py
CHANGED
@@ -30,14 +30,22 @@ class TestPipeline(unittest.TestCase):
|
|
30 |
|
31 |
def test_linear_relation(self):
|
32 |
y = self.X[:, 0]
|
33 |
-
model = PySRRegressor(
|
|
|
|
|
|
|
34 |
model.fit(self.X, y)
|
35 |
print(model.equations_)
|
36 |
self.assertLessEqual(model.get_best()["loss"], 1e-4)
|
37 |
|
38 |
def test_multiprocessing(self):
|
39 |
y = self.X[:, 0]
|
40 |
-
model = PySRRegressor(
|
|
|
|
|
|
|
|
|
|
|
41 |
model.fit(self.X, y)
|
42 |
print(model.equations_)
|
43 |
self.assertLessEqual(model.equations_.iloc[-1]["loss"], 1e-4)
|
@@ -55,6 +63,7 @@ class TestPipeline(unittest.TestCase):
|
|
55 |
# Test custom operators with constraints:
|
56 |
nested_constraints={"square_op": {"square_op": 3}},
|
57 |
constraints={"square_op": 10},
|
|
|
58 |
)
|
59 |
model.fit(self.X, y)
|
60 |
equations = model.equations_
|
@@ -95,6 +104,7 @@ class TestPipeline(unittest.TestCase):
|
|
95 |
procs=0,
|
96 |
temp_equation_file=True,
|
97 |
delete_tempfiles=False,
|
|
|
98 |
)
|
99 |
model.fit(X.copy(), y, weights=w)
|
100 |
|
@@ -124,6 +134,7 @@ class TestPipeline(unittest.TestCase):
|
|
124 |
unary_operators=[],
|
125 |
binary_operators=["plus"],
|
126 |
**self.default_test_kwargs,
|
|
|
127 |
)
|
128 |
self.assertTrue("None" in regressor.__repr__())
|
129 |
regressor.fit(X, y)
|
@@ -134,7 +145,7 @@ class TestPipeline(unittest.TestCase):
|
|
134 |
np.testing.assert_almost_equal(regressor.predict(X), y, decimal=1)
|
135 |
|
136 |
# Test if repeated fit works:
|
137 |
-
regressor.set_params(niterations=0, warm_start=True)
|
138 |
# This should exit immediately, and use the old equations
|
139 |
regressor.fit(X, y)
|
140 |
|
@@ -155,11 +166,18 @@ class TestPipeline(unittest.TestCase):
|
|
155 |
unary_operators="sq(x) = x^2",
|
156 |
binary_operators="plus",
|
157 |
extra_sympy_mappings={"sq": lambda x: x**2},
|
158 |
-
**
|
|
|
|
|
|
|
|
|
159 |
procs=0,
|
160 |
denoise=True,
|
|
|
|
|
161 |
)
|
162 |
model.fit(self.X, y)
|
|
|
163 |
self.assertLessEqual(model.get_best()[1]["loss"], 1e-2)
|
164 |
self.assertLessEqual(model.get_best()[1]["loss"], 1e-2)
|
165 |
|
@@ -191,6 +209,7 @@ class TestPipeline(unittest.TestCase):
|
|
191 |
**self.default_test_kwargs,
|
192 |
denoise=True,
|
193 |
nested_constraints={"/": {"+": 1, "-": 1}, "+": {"*": 4}},
|
|
|
194 |
)
|
195 |
model.fit(X, y, Xresampled=Xresampled)
|
196 |
self.assertNotIn("unused_feature", model.latex())
|
@@ -348,13 +367,14 @@ class TestMiscellaneous(unittest.TestCase):
|
|
348 |
def test_scikit_learn_compatibility(self):
|
349 |
"""Test PySRRegressor compatibility with scikit-learn."""
|
350 |
model = PySRRegressor(
|
351 |
-
max_evals=
|
352 |
verbosity=0,
|
353 |
progress=False,
|
354 |
random_state=0,
|
355 |
deterministic=True,
|
356 |
procs=0,
|
357 |
multithreading=False,
|
|
|
358 |
) # Return early.
|
359 |
|
360 |
check_generator = check_estimator(model, generate_only=True)
|
|
|
30 |
|
31 |
def test_linear_relation(self):
|
32 |
y = self.X[:, 0]
|
33 |
+
model = PySRRegressor(
|
34 |
+
**self.default_test_kwargs,
|
35 |
+
early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 1",
|
36 |
+
)
|
37 |
model.fit(self.X, y)
|
38 |
print(model.equations_)
|
39 |
self.assertLessEqual(model.get_best()["loss"], 1e-4)
|
40 |
|
41 |
def test_multiprocessing(self):
|
42 |
y = self.X[:, 0]
|
43 |
+
model = PySRRegressor(
|
44 |
+
**self.default_test_kwargs,
|
45 |
+
procs=2,
|
46 |
+
multithreading=False,
|
47 |
+
early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 1",
|
48 |
+
)
|
49 |
model.fit(self.X, y)
|
50 |
print(model.equations_)
|
51 |
self.assertLessEqual(model.equations_.iloc[-1]["loss"], 1e-4)
|
|
|
63 |
# Test custom operators with constraints:
|
64 |
nested_constraints={"square_op": {"square_op": 3}},
|
65 |
constraints={"square_op": 10},
|
66 |
+
early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 3",
|
67 |
)
|
68 |
model.fit(self.X, y)
|
69 |
equations = model.equations_
|
|
|
104 |
procs=0,
|
105 |
temp_equation_file=True,
|
106 |
delete_tempfiles=False,
|
107 |
+
early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 2",
|
108 |
)
|
109 |
model.fit(X.copy(), y, weights=w)
|
110 |
|
|
|
134 |
unary_operators=[],
|
135 |
binary_operators=["plus"],
|
136 |
**self.default_test_kwargs,
|
137 |
+
early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 3",
|
138 |
)
|
139 |
self.assertTrue("None" in regressor.__repr__())
|
140 |
regressor.fit(X, y)
|
|
|
145 |
np.testing.assert_almost_equal(regressor.predict(X), y, decimal=1)
|
146 |
|
147 |
# Test if repeated fit works:
|
148 |
+
regressor.set_params(niterations=0, warm_start=True, early_stop_condition=None)
|
149 |
# This should exit immediately, and use the old equations
|
150 |
regressor.fit(X, y)
|
151 |
|
|
|
166 |
unary_operators="sq(x) = x^2",
|
167 |
binary_operators="plus",
|
168 |
extra_sympy_mappings={"sq": lambda x: x**2},
|
169 |
+
**{
|
170 |
+
k: v
|
171 |
+
for k, v in self.default_test_kwargs.items()
|
172 |
+
if k != "model_selection"
|
173 |
+
},
|
174 |
procs=0,
|
175 |
denoise=True,
|
176 |
+
early_stop_condition="stop_if(loss, complexity) = loss < 0.05 && complexity == 2",
|
177 |
+
model_selection="best",
|
178 |
)
|
179 |
model.fit(self.X, y)
|
180 |
+
print(model)
|
181 |
self.assertLessEqual(model.get_best()[1]["loss"], 1e-2)
|
182 |
self.assertLessEqual(model.get_best()[1]["loss"], 1e-2)
|
183 |
|
|
|
209 |
**self.default_test_kwargs,
|
210 |
denoise=True,
|
211 |
nested_constraints={"/": {"+": 1, "-": 1}, "+": {"*": 4}},
|
212 |
+
early_stop_condition="stop_if(loss, complexity) = loss < 1e-3 && complexity == 7",
|
213 |
)
|
214 |
model.fit(X, y, Xresampled=Xresampled)
|
215 |
self.assertNotIn("unused_feature", model.latex())
|
|
|
367 |
def test_scikit_learn_compatibility(self):
|
368 |
"""Test PySRRegressor compatibility with scikit-learn."""
|
369 |
model = PySRRegressor(
|
370 |
+
max_evals=1000,
|
371 |
verbosity=0,
|
372 |
progress=False,
|
373 |
random_state=0,
|
374 |
deterministic=True,
|
375 |
procs=0,
|
376 |
multithreading=False,
|
377 |
+
warm_start=False,
|
378 |
) # Return early.
|
379 |
|
380 |
check_generator = check_estimator(model, generate_only=True)
|