MilesCranmer commited on
Commit
4db1c62
·
1 Parent(s): b80fb14

Use random forest for feature selection

Browse files
Files changed (1) hide show
  1. pysr/sr.py +2 -2
pysr/sr.py CHANGED
@@ -722,10 +722,10 @@ def run_feature_selection(X, y, select_k_features):
722
  the k most important features in X, returning indices for those
723
  features as output."""
724
 
725
- from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
726
  from sklearn.feature_selection import SelectFromModel, SelectKBest
727
 
728
- clf = GradientBoostingRegressor(n_estimators=100, learning_rate=0.1, max_depth=1, random_state=0, loss='ls') #RandomForestRegressor()
729
  clf.fit(X, y)
730
  selector = SelectFromModel(clf, threshold=-np.inf,
731
  max_features=select_k_features, prefit=True)
 
722
  the k most important features in X, returning indices for those
723
  features as output."""
724
 
725
+ from sklearn.ensemble import RandomForestRegressor
726
  from sklearn.feature_selection import SelectFromModel, SelectKBest
727
 
728
+ clf = RandomForestRegressor(n_estimators=100, max_depth=3, random_state=0)
729
  clf.fit(X, y)
730
  selector = SelectFromModel(clf, threshold=-np.inf,
731
  max_features=select_k_features, prefit=True)