Spaces:
Sleeping
Sleeping
MilesCranmer
commited on
Commit
•
51b7bbd
1
Parent(s):
f7ce7ac
Tweak docs formatting
Browse files- pysr/sr.py +2 -30
pysr/sr.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
"""
|
2 |
import copy
|
3 |
import os
|
4 |
import sys
|
@@ -777,32 +777,25 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
|
|
777 |
equation_file : str
|
778 |
Path to a pickle file containing a saved model, or a csv file
|
779 |
containing equations.
|
780 |
-
|
781 |
binary_operators : list[str]
|
782 |
The same binary operators used when creating the model.
|
783 |
Not needed if loading from a pickle file.
|
784 |
-
|
785 |
unary_operators : list[str]
|
786 |
The same unary operators used when creating the model.
|
787 |
Not needed if loading from a pickle file.
|
788 |
-
|
789 |
n_features_in : int
|
790 |
Number of features passed to the model.
|
791 |
Not needed if loading from a pickle file.
|
792 |
-
|
793 |
feature_names_in : list[str]
|
794 |
Names of the features passed to the model.
|
795 |
Not needed if loading from a pickle file.
|
796 |
-
|
797 |
selection_mask : list[bool]
|
798 |
If using select_k_features, you must pass `model.selection_mask_` here.
|
799 |
Not needed if loading from a pickle file.
|
800 |
-
|
801 |
nout : int, default=1
|
802 |
Number of outputs of the model.
|
803 |
Not needed if loading from a pickle file.
|
804 |
-
|
805 |
-
pysr_kwargs : dict
|
806 |
Any other keyword arguments to initialize the PySRRegressor object.
|
807 |
These will overwrite those stored in the pickle file.
|
808 |
Not needed if loading from a pickle file.
|
@@ -1174,18 +1167,14 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
|
|
1174 |
----------
|
1175 |
X : {ndarray | pandas.DataFrame} of shape (n_samples, n_features)
|
1176 |
Training data.
|
1177 |
-
|
1178 |
y : {ndarray | pandas.DataFrame} of shape (n_samples,) or (n_samples, n_targets)
|
1179 |
Target values. Will be cast to X's dtype if necessary.
|
1180 |
-
|
1181 |
Xresampled : {ndarray | pandas.DataFrame} of shape
|
1182 |
(n_resampled, n_features), default=None
|
1183 |
Resampled training data used for denoising.
|
1184 |
-
|
1185 |
weights : {ndarray | pandas.DataFrame} of the same shape as y
|
1186 |
Each element is how to weight the mean-square-error loss
|
1187 |
for that particular element of y.
|
1188 |
-
|
1189 |
variable_names : list[str] of length n_features
|
1190 |
Names of each variable in the training dataset, `X`.
|
1191 |
|
@@ -1193,13 +1182,10 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
|
|
1193 |
-------
|
1194 |
X_validated : ndarray of shape (n_samples, n_features)
|
1195 |
Validated training data.
|
1196 |
-
|
1197 |
y_validated : ndarray of shape (n_samples,) or (n_samples, n_targets)
|
1198 |
Validated target data.
|
1199 |
-
|
1200 |
Xresampled : ndarray of shape (n_resampled, n_features)
|
1201 |
Validated resampled training data used for denoising.
|
1202 |
-
|
1203 |
variable_names_validated : list[str] of length n_features
|
1204 |
Validated list of variable names for each feature in `X`.
|
1205 |
|
@@ -1260,17 +1246,13 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
|
|
1260 |
----------
|
1261 |
X : {ndarray | pandas.DataFrame} of shape (n_samples, n_features)
|
1262 |
Training data.
|
1263 |
-
|
1264 |
y : {ndarray | pandas.DataFrame} of shape (n_samples,) or (n_samples, n_targets)
|
1265 |
Target values. Will be cast to X's dtype if necessary.
|
1266 |
-
|
1267 |
Xresampled : {ndarray | pandas.DataFrame} of shape
|
1268 |
(n_resampled, n_features), default=None
|
1269 |
Resampled training data used for denoising.
|
1270 |
-
|
1271 |
variable_names : list[str] of length n_features
|
1272 |
Names of each variable in the training dataset, `X`.
|
1273 |
-
|
1274 |
random_state : int, Numpy RandomState instance or None, default=None
|
1275 |
Pass an int for reproducible results across multiple function calls.
|
1276 |
See :term:`Glossary <random_state>`.
|
@@ -1284,13 +1266,11 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
|
|
1284 |
equal to :param`X.shape[0]`. n_features will be equal to
|
1285 |
:param`self.select_k_features` if `self.select_k_features is not None`,
|
1286 |
otherwise it will be equal to :param`X.shape[1]`
|
1287 |
-
|
1288 |
y_transformed : ndarray of shape (n_samples,) or (n_samples, n_outputs)
|
1289 |
Transformed target data. n_samples will be equal to
|
1290 |
:param`Xresampled.shape[0]` if :param`self.denoise` is `True`,
|
1291 |
and :param`Xresampled is not None`, otherwise it will be
|
1292 |
equal to :param`X.shape[0]`.
|
1293 |
-
|
1294 |
variable_names_transformed : list[str] of length n_features
|
1295 |
Names of each variable in the transformed dataset,
|
1296 |
`X_transformed`.
|
@@ -1341,17 +1321,13 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
|
|
1341 |
----------
|
1342 |
X : {ndarray | pandas.DataFrame} of shape (n_samples, n_features)
|
1343 |
Training data.
|
1344 |
-
|
1345 |
y : {ndarray | pandas.DataFrame} of shape (n_samples,) or (n_samples, n_targets)
|
1346 |
Target values. Will be cast to X's dtype if necessary.
|
1347 |
-
|
1348 |
mutated_params : dict[str, Any]
|
1349 |
Dictionary of mutated versions of some parameters passed in __init__.
|
1350 |
-
|
1351 |
weights : {ndarray | pandas.DataFrame} of the same shape as y
|
1352 |
Each element is how to weight the mean-square-error loss
|
1353 |
for that particular element of y.
|
1354 |
-
|
1355 |
seed : int
|
1356 |
Random seed for julia backend process.
|
1357 |
|
@@ -1592,21 +1568,17 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
|
|
1592 |
----------
|
1593 |
X : {ndarray | pandas.DataFrame} of shape (n_samples, n_features)
|
1594 |
Training data.
|
1595 |
-
|
1596 |
y : {ndarray | pandas.DataFrame} of shape (n_samples,) or (n_samples, n_targets)
|
1597 |
Target values. Will be cast to X's dtype if necessary.
|
1598 |
-
|
1599 |
Xresampled : {ndarray | pandas.DataFrame} of shape
|
1600 |
(n_resampled, n_features), default=None
|
1601 |
Resampled training data to generate a denoised data on. This
|
1602 |
will be used as the training data, rather than `X`.
|
1603 |
-
|
1604 |
weights : {ndarray | pandas.DataFrame} of the same shape as y, default=None
|
1605 |
Each element is how to weight the mean-square-error loss
|
1606 |
for that particular element of `y`. Alternatively,
|
1607 |
if a custom `loss` was set, it will can be used
|
1608 |
in arbitrary ways.
|
1609 |
-
|
1610 |
variable_names : list[str], default=None
|
1611 |
A list of names for the variables, rather than "x0", "x1", etc.
|
1612 |
If :param`X` is a pandas dataframe, the column names will be used
|
|
|
1 |
+
"""Define the PySRRegressor scikit-learn interface."""
|
2 |
import copy
|
3 |
import os
|
4 |
import sys
|
|
|
777 |
equation_file : str
|
778 |
Path to a pickle file containing a saved model, or a csv file
|
779 |
containing equations.
|
|
|
780 |
binary_operators : list[str]
|
781 |
The same binary operators used when creating the model.
|
782 |
Not needed if loading from a pickle file.
|
|
|
783 |
unary_operators : list[str]
|
784 |
The same unary operators used when creating the model.
|
785 |
Not needed if loading from a pickle file.
|
|
|
786 |
n_features_in : int
|
787 |
Number of features passed to the model.
|
788 |
Not needed if loading from a pickle file.
|
|
|
789 |
feature_names_in : list[str]
|
790 |
Names of the features passed to the model.
|
791 |
Not needed if loading from a pickle file.
|
|
|
792 |
selection_mask : list[bool]
|
793 |
If using select_k_features, you must pass `model.selection_mask_` here.
|
794 |
Not needed if loading from a pickle file.
|
|
|
795 |
nout : int, default=1
|
796 |
Number of outputs of the model.
|
797 |
Not needed if loading from a pickle file.
|
798 |
+
**pysr_kwargs : dict
|
|
|
799 |
Any other keyword arguments to initialize the PySRRegressor object.
|
800 |
These will overwrite those stored in the pickle file.
|
801 |
Not needed if loading from a pickle file.
|
|
|
1167 |
----------
|
1168 |
X : {ndarray | pandas.DataFrame} of shape (n_samples, n_features)
|
1169 |
Training data.
|
|
|
1170 |
y : {ndarray | pandas.DataFrame} of shape (n_samples,) or (n_samples, n_targets)
|
1171 |
Target values. Will be cast to X's dtype if necessary.
|
|
|
1172 |
Xresampled : {ndarray | pandas.DataFrame} of shape
|
1173 |
(n_resampled, n_features), default=None
|
1174 |
Resampled training data used for denoising.
|
|
|
1175 |
weights : {ndarray | pandas.DataFrame} of the same shape as y
|
1176 |
Each element is how to weight the mean-square-error loss
|
1177 |
for that particular element of y.
|
|
|
1178 |
variable_names : list[str] of length n_features
|
1179 |
Names of each variable in the training dataset, `X`.
|
1180 |
|
|
|
1182 |
-------
|
1183 |
X_validated : ndarray of shape (n_samples, n_features)
|
1184 |
Validated training data.
|
|
|
1185 |
y_validated : ndarray of shape (n_samples,) or (n_samples, n_targets)
|
1186 |
Validated target data.
|
|
|
1187 |
Xresampled : ndarray of shape (n_resampled, n_features)
|
1188 |
Validated resampled training data used for denoising.
|
|
|
1189 |
variable_names_validated : list[str] of length n_features
|
1190 |
Validated list of variable names for each feature in `X`.
|
1191 |
|
|
|
1246 |
----------
|
1247 |
X : {ndarray | pandas.DataFrame} of shape (n_samples, n_features)
|
1248 |
Training data.
|
|
|
1249 |
y : {ndarray | pandas.DataFrame} of shape (n_samples,) or (n_samples, n_targets)
|
1250 |
Target values. Will be cast to X's dtype if necessary.
|
|
|
1251 |
Xresampled : {ndarray | pandas.DataFrame} of shape
|
1252 |
(n_resampled, n_features), default=None
|
1253 |
Resampled training data used for denoising.
|
|
|
1254 |
variable_names : list[str] of length n_features
|
1255 |
Names of each variable in the training dataset, `X`.
|
|
|
1256 |
random_state : int, Numpy RandomState instance or None, default=None
|
1257 |
Pass an int for reproducible results across multiple function calls.
|
1258 |
See :term:`Glossary <random_state>`.
|
|
|
1266 |
equal to :param`X.shape[0]`. n_features will be equal to
|
1267 |
:param`self.select_k_features` if `self.select_k_features is not None`,
|
1268 |
otherwise it will be equal to :param`X.shape[1]`
|
|
|
1269 |
y_transformed : ndarray of shape (n_samples,) or (n_samples, n_outputs)
|
1270 |
Transformed target data. n_samples will be equal to
|
1271 |
:param`Xresampled.shape[0]` if :param`self.denoise` is `True`,
|
1272 |
and :param`Xresampled is not None`, otherwise it will be
|
1273 |
equal to :param`X.shape[0]`.
|
|
|
1274 |
variable_names_transformed : list[str] of length n_features
|
1275 |
Names of each variable in the transformed dataset,
|
1276 |
`X_transformed`.
|
|
|
1321 |
----------
|
1322 |
X : {ndarray | pandas.DataFrame} of shape (n_samples, n_features)
|
1323 |
Training data.
|
|
|
1324 |
y : {ndarray | pandas.DataFrame} of shape (n_samples,) or (n_samples, n_targets)
|
1325 |
Target values. Will be cast to X's dtype if necessary.
|
|
|
1326 |
mutated_params : dict[str, Any]
|
1327 |
Dictionary of mutated versions of some parameters passed in __init__.
|
|
|
1328 |
weights : {ndarray | pandas.DataFrame} of the same shape as y
|
1329 |
Each element is how to weight the mean-square-error loss
|
1330 |
for that particular element of y.
|
|
|
1331 |
seed : int
|
1332 |
Random seed for julia backend process.
|
1333 |
|
|
|
1568 |
----------
|
1569 |
X : {ndarray | pandas.DataFrame} of shape (n_samples, n_features)
|
1570 |
Training data.
|
|
|
1571 |
y : {ndarray | pandas.DataFrame} of shape (n_samples,) or (n_samples, n_targets)
|
1572 |
Target values. Will be cast to X's dtype if necessary.
|
|
|
1573 |
Xresampled : {ndarray | pandas.DataFrame} of shape
|
1574 |
(n_resampled, n_features), default=None
|
1575 |
Resampled training data to generate a denoised data on. This
|
1576 |
will be used as the training data, rather than `X`.
|
|
|
1577 |
weights : {ndarray | pandas.DataFrame} of the same shape as y, default=None
|
1578 |
Each element is how to weight the mean-square-error loss
|
1579 |
for that particular element of `y`. Alternatively,
|
1580 |
if a custom `loss` was set, it will can be used
|
1581 |
in arbitrary ways.
|
|
|
1582 |
variable_names : list[str], default=None
|
1583 |
A list of names for the variables, rather than "x0", "x1", etc.
|
1584 |
If :param`X` is a pandas dataframe, the column names will be used
|