Spaces:
Sleeping
Sleeping
MilesCranmer
commited on
Commit
•
5a01e6f
1
Parent(s):
780b3a0
Move numpy export code to separate file
Browse files- pysr/export_numpy.py +29 -0
- pysr/sr.py +3 -27
pysr/export_numpy.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Code for exporting discovered expressions to numpy"""
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
from sympy import lambdify
|
5 |
+
|
6 |
+
|
7 |
+
class CallableEquation:
|
8 |
+
"""Simple wrapper for numpy lambda functions built with sympy"""
|
9 |
+
|
10 |
+
def __init__(self, sympy_symbols, eqn, selection=None, variable_names=None):
|
11 |
+
self._sympy = eqn
|
12 |
+
self._sympy_symbols = sympy_symbols
|
13 |
+
self._selection = selection
|
14 |
+
self._variable_names = variable_names
|
15 |
+
self._lambda = lambdify(sympy_symbols, eqn)
|
16 |
+
|
17 |
+
def __repr__(self):
|
18 |
+
return f"PySRFunction(X=>{self._sympy})"
|
19 |
+
|
20 |
+
def __call__(self, X):
|
21 |
+
expected_shape = (X.shape[0],)
|
22 |
+
if isinstance(X, pd.DataFrame):
|
23 |
+
# Lambda function takes as argument:
|
24 |
+
return self._lambda(
|
25 |
+
**{k: X[k].values for k in self._variable_names}
|
26 |
+
) * np.ones(expected_shape)
|
27 |
+
if self._selection is not None:
|
28 |
+
X = X[:, self._selection]
|
29 |
+
return self._lambda(*X.T) * np.ones(expected_shape)
|
pysr/sr.py
CHANGED
@@ -3,7 +3,7 @@ import sys
|
|
3 |
import numpy as np
|
4 |
import pandas as pd
|
5 |
import sympy
|
6 |
-
from sympy import sympify
|
7 |
import re
|
8 |
import tempfile
|
9 |
import shutil
|
@@ -22,6 +22,7 @@ from .julia_helpers import (
|
|
22 |
_add_sr_to_julia_project,
|
23 |
import_error_string,
|
24 |
)
|
|
|
25 |
from .deprecated import make_deprecated_kwargs_for_pysr_regressor
|
26 |
|
27 |
|
@@ -169,35 +170,10 @@ def best_callable(*args, **kwargs): # pragma: no cover
|
|
169 |
)
|
170 |
|
171 |
|
172 |
-
class CallableEquation:
|
173 |
-
"""Simple wrapper for numpy lambda functions built with sympy"""
|
174 |
-
|
175 |
-
def __init__(self, sympy_symbols, eqn, selection=None, variable_names=None):
|
176 |
-
self._sympy = eqn
|
177 |
-
self._sympy_symbols = sympy_symbols
|
178 |
-
self._selection = selection
|
179 |
-
self._variable_names = variable_names
|
180 |
-
self._lambda = lambdify(sympy_symbols, eqn)
|
181 |
-
|
182 |
-
def __repr__(self):
|
183 |
-
return f"PySRFunction(X=>{self._sympy})"
|
184 |
-
|
185 |
-
def __call__(self, X):
|
186 |
-
expected_shape = (X.shape[0],)
|
187 |
-
if isinstance(X, pd.DataFrame):
|
188 |
-
# Lambda function takes as argument:
|
189 |
-
return self._lambda(
|
190 |
-
**{k: X[k].values for k in self._variable_names}
|
191 |
-
) * np.ones(expected_shape)
|
192 |
-
if self._selection is not None:
|
193 |
-
X = X[:, self._selection]
|
194 |
-
return self._lambda(*X.T) * np.ones(expected_shape)
|
195 |
-
|
196 |
-
|
197 |
class PySRRegressor(BaseEstimator, RegressorMixin, MultiOutputMixin):
|
198 |
"""
|
199 |
High-performance symbolic regression.
|
200 |
-
|
201 |
This is the scikit-learn interface for SymbolicRegression.jl.
|
202 |
This model will automatically search for equations which fit
|
203 |
a given dataset subject to a particular loss and set of
|
|
|
3 |
import numpy as np
|
4 |
import pandas as pd
|
5 |
import sympy
|
6 |
+
from sympy import sympify
|
7 |
import re
|
8 |
import tempfile
|
9 |
import shutil
|
|
|
22 |
_add_sr_to_julia_project,
|
23 |
import_error_string,
|
24 |
)
|
25 |
+
from .export_numpy import CallableEquation
|
26 |
from .deprecated import make_deprecated_kwargs_for_pysr_regressor
|
27 |
|
28 |
|
|
|
170 |
)
|
171 |
|
172 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
class PySRRegressor(BaseEstimator, RegressorMixin, MultiOutputMixin):
|
174 |
"""
|
175 |
High-performance symbolic regression.
|
176 |
+
|
177 |
This is the scikit-learn interface for SymbolicRegression.jl.
|
178 |
This model will automatically search for equations which fit
|
179 |
a given dataset subject to a particular loss and set of
|