MilesCranmer commited on
Commit
5fe5010
·
1 Parent(s): 7602382

Order torch imports after Julia init

Browse files
Files changed (1) hide show
  1. test/test_torch.py +9 -1
test/test_torch.py CHANGED
@@ -2,7 +2,6 @@ import unittest
2
  import numpy as np
3
  import pandas as pd
4
  from pysr import sympy2torch, PySRRegressor
5
- import torch
6
  import sympy
7
  from functools import partial
8
 
@@ -14,6 +13,8 @@ class TestTorch(unittest.TestCase):
14
  def test_sympy2torch(self):
15
  x, y, z = sympy.symbols("x y z")
16
  cosx = 1.0 * sympy.cos(x) + y
 
 
17
  X = torch.tensor(np.random.randn(1000, 3))
18
  true = 1.0 * torch.cos(X[:, 0]) + X[:, 1]
19
  torch_module = sympy2torch(cosx, [x, y, z])
@@ -49,6 +50,8 @@ class TestTorch(unittest.TestCase):
49
 
50
  tformat = model.pytorch()
51
  self.assertEqual(str(tformat), "_SingleSymPyModule(expression=cos(x1)**2)")
 
 
52
  np.testing.assert_almost_equal(
53
  tformat(torch.tensor(X.values)).detach().numpy(),
54
  np.square(np.cos(X.values[:, 1])), # Selection 1st feature
@@ -81,6 +84,8 @@ class TestTorch(unittest.TestCase):
81
 
82
  tformat = model.pytorch()
83
  self.assertEqual(str(tformat), "_SingleSymPyModule(expression=cos(x1)**2)")
 
 
84
  np.testing.assert_almost_equal(
85
  tformat(torch.tensor(X)).detach().numpy(),
86
  np.square(np.cos(X[:, 1])), # 2nd feature
@@ -93,6 +98,7 @@ class TestTorch(unittest.TestCase):
93
 
94
  module = sympy2torch(expression, [x, y, z])
95
 
 
96
  X = torch.rand(100, 3).float() * 10
97
 
98
  true_out = (
@@ -133,6 +139,7 @@ class TestTorch(unittest.TestCase):
133
 
134
  tformat = model.pytorch()
135
  self.assertEqual(str(tformat), "_SingleSymPyModule(expression=sin(x1))")
 
136
  np.testing.assert_almost_equal(
137
  tformat(torch.tensor(X)).detach().numpy(),
138
  np.sin(X[:, 1]),
@@ -152,6 +159,7 @@ class TestTorch(unittest.TestCase):
152
  torch_module = model.pytorch()
153
 
154
  np_output = model.predict(X.values)
 
155
  torch_output = torch_module(torch.tensor(X.values)).detach().numpy()
156
 
157
  np.testing.assert_almost_equal(np_output, torch_output, decimal=4)
 
2
  import numpy as np
3
  import pandas as pd
4
  from pysr import sympy2torch, PySRRegressor
 
5
  import sympy
6
  from functools import partial
7
 
 
13
  def test_sympy2torch(self):
14
  x, y, z = sympy.symbols("x y z")
15
  cosx = 1.0 * sympy.cos(x) + y
16
+
17
+ import torch
18
  X = torch.tensor(np.random.randn(1000, 3))
19
  true = 1.0 * torch.cos(X[:, 0]) + X[:, 1]
20
  torch_module = sympy2torch(cosx, [x, y, z])
 
50
 
51
  tformat = model.pytorch()
52
  self.assertEqual(str(tformat), "_SingleSymPyModule(expression=cos(x1)**2)")
53
+ import torch
54
+
55
  np.testing.assert_almost_equal(
56
  tformat(torch.tensor(X.values)).detach().numpy(),
57
  np.square(np.cos(X.values[:, 1])), # Selection 1st feature
 
84
 
85
  tformat = model.pytorch()
86
  self.assertEqual(str(tformat), "_SingleSymPyModule(expression=cos(x1)**2)")
87
+
88
+ import torch
89
  np.testing.assert_almost_equal(
90
  tformat(torch.tensor(X)).detach().numpy(),
91
  np.square(np.cos(X[:, 1])), # 2nd feature
 
98
 
99
  module = sympy2torch(expression, [x, y, z])
100
 
101
+ import torch
102
  X = torch.rand(100, 3).float() * 10
103
 
104
  true_out = (
 
139
 
140
  tformat = model.pytorch()
141
  self.assertEqual(str(tformat), "_SingleSymPyModule(expression=sin(x1))")
142
+ import torch
143
  np.testing.assert_almost_equal(
144
  tformat(torch.tensor(X)).detach().numpy(),
145
  np.sin(X[:, 1]),
 
159
  torch_module = model.pytorch()
160
 
161
  np_output = model.predict(X.values)
162
+ import torch
163
  torch_output = torch_module(torch.tensor(X.values)).detach().numpy()
164
 
165
  np.testing.assert_almost_equal(np_output, torch_output, decimal=4)