Spaces:
Sleeping
Sleeping
MilesCranmer
commited on
Commit
•
627c408
1
Parent(s):
44b1333
Calculate length as constant
Browse files
README.md
CHANGED
@@ -148,7 +148,7 @@ pd.DataFrame, Results dataframe, giving complexity, MSE, and equations
|
|
148 |
# TODO
|
149 |
|
150 |
- [ ] Make scaling of changes to constant a hyperparameter
|
151 |
-
- [ ] Update hall of fame every iteration
|
152 |
- [ ] Calculate feature importances of future mutations, by looking at correlation between residual of model, and the features.
|
153 |
- Store feature importances of future, and periodically update it.
|
154 |
- [ ] Implement more parts of the original Eureqa algorithms: https://www.creativemachineslab.com/eureqa.html
|
@@ -162,6 +162,8 @@ pd.DataFrame, Results dataframe, giving complexity, MSE, and equations
|
|
162 |
- Current most expensive operations:
|
163 |
- [ ] Calculating the loss function - there is duplicate calculations happening.
|
164 |
- [x] Declaration of the weights array every iteration
|
|
|
|
|
165 |
- [x] Record very best individual in each population, and return at end.
|
166 |
- [x] Write our own tree copy operation; deepcopy() is the slowest operation by far.
|
167 |
- [x] Hyperparameter tune
|
|
|
148 |
# TODO
|
149 |
|
150 |
- [ ] Make scaling of changes to constant a hyperparameter
|
151 |
+
- [ ] Update hall of fame every iteration?
|
152 |
- [ ] Calculate feature importances of future mutations, by looking at correlation between residual of model, and the features.
|
153 |
- Store feature importances of future, and periodically update it.
|
154 |
- [ ] Implement more parts of the original Eureqa algorithms: https://www.creativemachineslab.com/eureqa.html
|
|
|
162 |
- Current most expensive operations:
|
163 |
- [ ] Calculating the loss function - there is duplicate calculations happening.
|
164 |
- [x] Declaration of the weights array every iteration
|
165 |
+
- [x] Add a node at the top of a tree
|
166 |
+
- [x] Insert a node at the top of a subtree
|
167 |
- [x] Record very best individual in each population, and return at end.
|
168 |
- [x] Write our own tree copy operation; deepcopy() is the slowest operation by far.
|
169 |
- [x] Hyperparameter tune
|
eureqa.jl
CHANGED
@@ -3,6 +3,21 @@ import Optim
|
|
3 |
const maxdegree = 2
|
4 |
const actualMaxsize = maxsize + maxdegree
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
id = (x,) -> x
|
7 |
const nuna = size(unaops)[1]
|
8 |
const nbin = size(binops)[1]
|
@@ -211,7 +226,6 @@ end
|
|
211 |
|
212 |
# Evaluate an equation over an array of datapoints
|
213 |
function evalTreeArray(tree::Node)::Array{Float32, 1}
|
214 |
-
len = size(X)[1]
|
215 |
if tree.degree == 0
|
216 |
if tree.constant
|
217 |
return ones(Float32, len) .* tree.val
|
@@ -225,17 +239,6 @@ function evalTreeArray(tree::Node)::Array{Float32, 1}
|
|
225 |
end
|
226 |
end
|
227 |
|
228 |
-
# Sum of square error between two arrays
|
229 |
-
function SSE(x::Array{Float32}, y::Array{Float32})::Float32
|
230 |
-
diff = (x - y)
|
231 |
-
return sum(diff .* diff)
|
232 |
-
end
|
233 |
-
|
234 |
-
# Mean of square error between two arrays
|
235 |
-
function MSE(x::Array{Float32}, y::Array{Float32})::Float32
|
236 |
-
return SSE(x, y)/size(x)[1]
|
237 |
-
end
|
238 |
-
|
239 |
# Score an equation
|
240 |
function scoreFunc(tree::Node)::Float32
|
241 |
try
|
@@ -608,7 +611,7 @@ function fullRun(niterations::Integer;
|
|
608 |
debug(verbosity, "-----------------------------------------")
|
609 |
debug(verbosity, "Complexity \t MSE \t Equation")
|
610 |
println(io,"Complexity|MSE|Equation")
|
611 |
-
for size=1:
|
612 |
if hallOfFame.exists[size]
|
613 |
member = hallOfFame.members[size]
|
614 |
numberSmallerAndBetter = sum([member.score > hallOfFame.members[i].score for i=1:(size-1)])
|
|
|
3 |
const maxdegree = 2
|
4 |
const actualMaxsize = maxsize + maxdegree
|
5 |
|
6 |
+
|
7 |
+
# Sum of square error between two arrays
|
8 |
+
function SSE(x::Array{Float32}, y::Array{Float32})::Float32
|
9 |
+
diff = (x - y)
|
10 |
+
return sum(diff .* diff)
|
11 |
+
end
|
12 |
+
|
13 |
+
# Mean of square error between two arrays
|
14 |
+
function MSE(x::Array{Float32}, y::Array{Float32})::Float32
|
15 |
+
return SSE(x, y)/size(x)[1]
|
16 |
+
end
|
17 |
+
|
18 |
+
const len = size(X)[1]
|
19 |
+
const baselineMSE = MSE(y, convert(Array{Float32, 1}, ones(len) .* sum(y)/len))
|
20 |
+
|
21 |
id = (x,) -> x
|
22 |
const nuna = size(unaops)[1]
|
23 |
const nbin = size(binops)[1]
|
|
|
226 |
|
227 |
# Evaluate an equation over an array of datapoints
|
228 |
function evalTreeArray(tree::Node)::Array{Float32, 1}
|
|
|
229 |
if tree.degree == 0
|
230 |
if tree.constant
|
231 |
return ones(Float32, len) .* tree.val
|
|
|
239 |
end
|
240 |
end
|
241 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
# Score an equation
|
243 |
function scoreFunc(tree::Node)::Float32
|
244 |
try
|
|
|
611 |
debug(verbosity, "-----------------------------------------")
|
612 |
debug(verbosity, "Complexity \t MSE \t Equation")
|
613 |
println(io,"Complexity|MSE|Equation")
|
614 |
+
for size=1:actualMaxsize
|
615 |
if hallOfFame.exists[size]
|
616 |
member = hallOfFame.members[size]
|
617 |
numberSmallerAndBetter = sum([member.score > hallOfFame.members[i].score for i=1:(size-1)])
|