Spaces:
Running
Running
MilesCranmer
commited on
Commit
·
66b15fc
1
Parent(s):
205d866
Move everything into single PySRRegressor
Browse files- pysr/sklearn.py +0 -138
- pysr/sr.py +858 -757
pysr/sklearn.py
DELETED
@@ -1,138 +0,0 @@
|
|
1 |
-
from pysr import pysr, best_row, get_hof
|
2 |
-
from sklearn.base import BaseEstimator, RegressorMixin
|
3 |
-
import inspect
|
4 |
-
import pandas as pd
|
5 |
-
|
6 |
-
|
7 |
-
class PySRRegressor(BaseEstimator, RegressorMixin):
|
8 |
-
def __init__(self, model_selection="accuracy", **params):
|
9 |
-
"""Initialize settings for pysr.pysr call.
|
10 |
-
|
11 |
-
:param model_selection: How to select a model. Can be 'accuracy' or 'best'. 'best' will optimize a combination of complexity and accuracy.
|
12 |
-
:type model_selection: str
|
13 |
-
"""
|
14 |
-
super().__init__()
|
15 |
-
self.model_selection = model_selection
|
16 |
-
self.params = params
|
17 |
-
|
18 |
-
# Stored equations:
|
19 |
-
self.equations = None
|
20 |
-
|
21 |
-
def __repr__(self):
|
22 |
-
if self.equations is None:
|
23 |
-
return "PySRRegressor.equations = None"
|
24 |
-
|
25 |
-
equations = self.equations
|
26 |
-
selected = ["" for _ in range(len(equations))]
|
27 |
-
if self.model_selection == "accuracy":
|
28 |
-
chosen_row = -1
|
29 |
-
elif self.model_selection == "best":
|
30 |
-
chosen_row = equations["score"].idxmax()
|
31 |
-
else:
|
32 |
-
raise NotImplementedError
|
33 |
-
selected[chosen_row] = ">>>>"
|
34 |
-
output = "PySRRegressor.equations = [\n"
|
35 |
-
repr_equations = pd.DataFrame(
|
36 |
-
dict(
|
37 |
-
pick=selected,
|
38 |
-
score=equations["score"],
|
39 |
-
Equation=equations["Equation"],
|
40 |
-
MSE=equations["MSE"],
|
41 |
-
Complexity=equations["Complexity"],
|
42 |
-
)
|
43 |
-
)
|
44 |
-
output += repr_equations.__repr__()
|
45 |
-
output += "\n]"
|
46 |
-
return output
|
47 |
-
|
48 |
-
def set_params(self, **params):
|
49 |
-
"""Set parameters for pysr.pysr call or model_selection strategy."""
|
50 |
-
for key, value in params.items():
|
51 |
-
if key == "model_selection":
|
52 |
-
self.model_selection = value
|
53 |
-
self.params[key] = value
|
54 |
-
|
55 |
-
return self
|
56 |
-
|
57 |
-
def get_params(self, deep=True):
|
58 |
-
del deep
|
59 |
-
return {**self.params, "model_selection": self.model_selection}
|
60 |
-
|
61 |
-
def get_best(self):
|
62 |
-
if self.equations is None:
|
63 |
-
return 0.0
|
64 |
-
if self.model_selection == "accuracy":
|
65 |
-
return self.equations.iloc[-1]
|
66 |
-
elif self.model_selection == "best":
|
67 |
-
return best_row(self.equations)
|
68 |
-
else:
|
69 |
-
raise NotImplementedError
|
70 |
-
|
71 |
-
def fit(self, X, y, weights=None, variable_names=None):
|
72 |
-
"""Search for equations to fit the dataset.
|
73 |
-
|
74 |
-
:param X: 2D array. Rows are examples, columns are features. If pandas DataFrame, the columns are used for variable names (so make sure they don't contain spaces).
|
75 |
-
:type X: np.ndarray/pandas.DataFrame
|
76 |
-
:param y: 1D array (rows are examples) or 2D array (rows are examples, columns are outputs). Putting in a 2D array will trigger a search for equations for each feature of y.
|
77 |
-
:type y: np.ndarray
|
78 |
-
:param weights: Optional. Same shape as y. Each element is how to weight the mean-square-error loss for that particular element of y.
|
79 |
-
:type weights: np.ndarray
|
80 |
-
:param variable_names: a list of names for the variables, other than "x0", "x1", etc.
|
81 |
-
:type variable_names: list
|
82 |
-
"""
|
83 |
-
if variable_names is None:
|
84 |
-
if "variable_names" in self.params:
|
85 |
-
variable_names = self.params["variable_names"]
|
86 |
-
|
87 |
-
self.equations = pysr(
|
88 |
-
X=X,
|
89 |
-
y=y,
|
90 |
-
weights=weights,
|
91 |
-
variable_names=variable_names,
|
92 |
-
**{k: v for k, v in self.params.items() if k != "variable_names"},
|
93 |
-
)
|
94 |
-
return self
|
95 |
-
|
96 |
-
def refresh(self):
|
97 |
-
# Updates self.equations with any new options passed,
|
98 |
-
# such as extra_sympy_mappings.
|
99 |
-
self.equations = get_hof(**self.params)
|
100 |
-
|
101 |
-
def predict(self, X):
|
102 |
-
self.refresh()
|
103 |
-
np_format = self.get_best()["lambda_format"]
|
104 |
-
return np_format(X)
|
105 |
-
|
106 |
-
def sympy(self):
|
107 |
-
self.refresh()
|
108 |
-
return self.get_best()["sympy_format"]
|
109 |
-
|
110 |
-
def latex(self):
|
111 |
-
self.refresh()
|
112 |
-
return self.sympy().simplify()
|
113 |
-
|
114 |
-
def jax(self):
|
115 |
-
self.set_params(output_jax_format=True)
|
116 |
-
self.refresh()
|
117 |
-
return self.get_best()["jax_format"]
|
118 |
-
|
119 |
-
def pytorch(self):
|
120 |
-
self.set_params(output_torch_format=True)
|
121 |
-
self.refresh()
|
122 |
-
return self.get_best()["torch_format"]
|
123 |
-
|
124 |
-
|
125 |
-
# Add the docs from pysr() to PySRRegressor():
|
126 |
-
_pysr_docstring_split = []
|
127 |
-
_start_recording = False
|
128 |
-
for line in inspect.getdoc(pysr).split("\n"):
|
129 |
-
# Skip docs on "X" and "y"
|
130 |
-
if ":param binary_operators:" in line:
|
131 |
-
_start_recording = True
|
132 |
-
if ":returns:" in line:
|
133 |
-
_start_recording = False
|
134 |
-
if _start_recording:
|
135 |
-
_pysr_docstring_split.append(line)
|
136 |
-
_pysr_docstring = "\n\t".join(_pysr_docstring_split)
|
137 |
-
|
138 |
-
PySRRegressor.__init__.__doc__ += _pysr_docstring
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pysr/sr.py
CHANGED
@@ -11,6 +11,7 @@ from pathlib import Path
|
|
11 |
from datetime import datetime
|
12 |
import warnings
|
13 |
from multiprocessing import cpu_count
|
|
|
14 |
|
15 |
is_julia_warning_silenced = False
|
16 |
|
@@ -36,20 +37,6 @@ def install(julia_project=None): # pragma: no cover
|
|
36 |
|
37 |
|
38 |
Main = None
|
39 |
-
global_state = dict(
|
40 |
-
equation_file="hall_of_fame.csv",
|
41 |
-
n_features=None,
|
42 |
-
variable_names=[],
|
43 |
-
extra_sympy_mappings={},
|
44 |
-
extra_torch_mappings={},
|
45 |
-
extra_jax_mappings={},
|
46 |
-
output_jax_format=False,
|
47 |
-
output_torch_format=False,
|
48 |
-
multioutput=False,
|
49 |
-
nout=1,
|
50 |
-
selection=None,
|
51 |
-
raw_julia_output=None,
|
52 |
-
)
|
53 |
|
54 |
already_ran = False
|
55 |
|
@@ -93,541 +80,14 @@ sympy_mappings = {
|
|
93 |
}
|
94 |
|
95 |
|
96 |
-
def pysr(
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
binary_operators=None,
|
101 |
-
unary_operators=None,
|
102 |
-
procs=cpu_count(),
|
103 |
-
loss="L2DistLoss()",
|
104 |
-
populations=20,
|
105 |
-
niterations=100,
|
106 |
-
ncyclesperiteration=300,
|
107 |
-
alpha=0.1,
|
108 |
-
annealing=False,
|
109 |
-
fractionReplaced=0.10,
|
110 |
-
fractionReplacedHof=0.10,
|
111 |
-
npop=1000,
|
112 |
-
parsimony=1e-4,
|
113 |
-
migration=True,
|
114 |
-
hofMigration=True,
|
115 |
-
shouldOptimizeConstants=True,
|
116 |
-
topn=10,
|
117 |
-
weightAddNode=1,
|
118 |
-
weightInsertNode=3,
|
119 |
-
weightDeleteNode=3,
|
120 |
-
weightDoNothing=1,
|
121 |
-
weightMutateConstant=10,
|
122 |
-
weightMutateOperator=1,
|
123 |
-
weightRandomize=1,
|
124 |
-
weightSimplify=0.002,
|
125 |
-
perturbationFactor=1.0,
|
126 |
-
extra_sympy_mappings=None,
|
127 |
-
extra_torch_mappings=None,
|
128 |
-
extra_jax_mappings=None,
|
129 |
-
equation_file=None,
|
130 |
-
verbosity=1e9,
|
131 |
-
progress=None,
|
132 |
-
maxsize=20,
|
133 |
-
fast_cycle=False,
|
134 |
-
maxdepth=None,
|
135 |
-
variable_names=None,
|
136 |
-
batching=False,
|
137 |
-
batchSize=50,
|
138 |
-
select_k_features=None,
|
139 |
-
warmupMaxsizeBy=0.0,
|
140 |
-
constraints=None,
|
141 |
-
useFrequency=True,
|
142 |
-
tempdir=None,
|
143 |
-
delete_tempfiles=True,
|
144 |
-
julia_project=None,
|
145 |
-
update=True,
|
146 |
-
temp_equation_file=False,
|
147 |
-
output_jax_format=False,
|
148 |
-
output_torch_format=False,
|
149 |
-
optimizer_algorithm="BFGS",
|
150 |
-
optimizer_nrestarts=3,
|
151 |
-
optimize_probability=1.0,
|
152 |
-
optimizer_iterations=10,
|
153 |
-
tournament_selection_n=10,
|
154 |
-
tournament_selection_p=1.0,
|
155 |
-
denoise=False,
|
156 |
-
Xresampled=None,
|
157 |
-
precision=32,
|
158 |
-
multithreading=None,
|
159 |
-
**kwargs,
|
160 |
-
):
|
161 |
-
"""Run symbolic regression to fit f(X[i, :]) ~ y[i] for all i.
|
162 |
-
Note: most default parameters have been tuned over several example
|
163 |
-
equations, but you should adjust `niterations`,
|
164 |
-
`binary_operators`, `unary_operators` to your requirements.
|
165 |
-
You can view more detailed explanations of the options on the
|
166 |
-
[options page](https://pysr.readthedocs.io/en/latest/docs/options/) of the documentation.
|
167 |
-
|
168 |
-
:param X: 2D array. Rows are examples, columns are features. If pandas DataFrame, the columns are used for variable names (so make sure they don't contain spaces).
|
169 |
-
:type X: np.ndarray/pandas.DataFrame
|
170 |
-
:param y: 1D array (rows are examples) or 2D array (rows are examples, columns are outputs). Putting in a 2D array will trigger a search for equations for each feature of y.
|
171 |
-
:type y: np.ndarray
|
172 |
-
:param weights: same shape as y. Each element is how to weight the mean-square-error loss for that particular element of y.
|
173 |
-
:type weights: np.ndarray
|
174 |
-
:param binary_operators: List of strings giving the binary operators in Julia's Base. Default is ["+", "-", "*", "/",].
|
175 |
-
:type binary_operators: list
|
176 |
-
:param unary_operators: Same but for operators taking a single scalar. Default is [].
|
177 |
-
:type unary_operators: list
|
178 |
-
:param procs: Number of processes (=number of populations running).
|
179 |
-
:type procs: int
|
180 |
-
:param loss: String of Julia code specifying the loss function. Can either be a loss from LossFunctions.jl, or your own loss written as a function. Examples of custom written losses include: `myloss(x, y) = abs(x-y)` for non-weighted, or `myloss(x, y, w) = w*abs(x-y)` for weighted. Among the included losses, these are as follows. Regression: `LPDistLoss{P}()`, `L1DistLoss()`, `L2DistLoss()` (mean square), `LogitDistLoss()`, `HuberLoss(d)`, `L1EpsilonInsLoss(ϵ)`, `L2EpsilonInsLoss(ϵ)`, `PeriodicLoss(c)`, `QuantileLoss(τ)`. Classification: `ZeroOneLoss()`, `PerceptronLoss()`, `L1HingeLoss()`, `SmoothedL1HingeLoss(γ)`, `ModifiedHuberLoss()`, `L2MarginLoss()`, `ExpLoss()`, `SigmoidLoss()`, `DWDMarginLoss(q)`.
|
181 |
-
:type loss: str
|
182 |
-
:param populations: Number of populations running.
|
183 |
-
:type populations: int
|
184 |
-
:param niterations: Number of iterations of the algorithm to run. The best equations are printed, and migrate between populations, at the end of each.
|
185 |
-
:type niterations: int
|
186 |
-
:param ncyclesperiteration: Number of total mutations to run, per 10 samples of the population, per iteration.
|
187 |
-
:type ncyclesperiteration: int
|
188 |
-
:param alpha: Initial temperature.
|
189 |
-
:type alpha: float
|
190 |
-
:param annealing: Whether to use annealing. You should (and it is default).
|
191 |
-
:type annealing: bool
|
192 |
-
:param fractionReplaced: How much of population to replace with migrating equations from other populations.
|
193 |
-
:type fractionReplaced: float
|
194 |
-
:param fractionReplacedHof: How much of population to replace with migrating equations from hall of fame.
|
195 |
-
:type fractionReplacedHof: float
|
196 |
-
:param npop: Number of individuals in each population
|
197 |
-
:type npop: int
|
198 |
-
:param parsimony: Multiplicative factor for how much to punish complexity.
|
199 |
-
:type parsimony: float
|
200 |
-
:param migration: Whether to migrate.
|
201 |
-
:type migration: bool
|
202 |
-
:param hofMigration: Whether to have the hall of fame migrate.
|
203 |
-
:type hofMigration: bool
|
204 |
-
:param shouldOptimizeConstants: Whether to numerically optimize constants (Nelder-Mead/Newton) at the end of each iteration.
|
205 |
-
:type shouldOptimizeConstants: bool
|
206 |
-
:param topn: How many top individuals migrate from each population.
|
207 |
-
:type topn: int
|
208 |
-
:param perturbationFactor: Constants are perturbed by a max factor of (perturbationFactor*T + 1). Either multiplied by this or divided by this.
|
209 |
-
:type perturbationFactor: float
|
210 |
-
:param weightAddNode: Relative likelihood for mutation to add a node
|
211 |
-
:type weightAddNode: float
|
212 |
-
:param weightInsertNode: Relative likelihood for mutation to insert a node
|
213 |
-
:type weightInsertNode: float
|
214 |
-
:param weightDeleteNode: Relative likelihood for mutation to delete a node
|
215 |
-
:type weightDeleteNode: float
|
216 |
-
:param weightDoNothing: Relative likelihood for mutation to leave the individual
|
217 |
-
:type weightDoNothing: float
|
218 |
-
:param weightMutateConstant: Relative likelihood for mutation to change the constant slightly in a random direction.
|
219 |
-
:type weightMutateConstant: float
|
220 |
-
:param weightMutateOperator: Relative likelihood for mutation to swap an operator.
|
221 |
-
:type weightMutateOperator: float
|
222 |
-
:param weightRandomize: Relative likelihood for mutation to completely delete and then randomly generate the equation
|
223 |
-
:type weightRandomize: float
|
224 |
-
:param weightSimplify: Relative likelihood for mutation to simplify constant parts by evaluation
|
225 |
-
:type weightSimplify: float
|
226 |
-
:param equation_file: Where to save the files (.csv separated by |)
|
227 |
-
:type equation_file: str
|
228 |
-
:param verbosity: What verbosity level to use. 0 means minimal print statements.
|
229 |
-
:type verbosity: int
|
230 |
-
:param progress: Whether to use a progress bar instead of printing to stdout.
|
231 |
-
:type progress: bool
|
232 |
-
:param maxsize: Max size of an equation.
|
233 |
-
:type maxsize: int
|
234 |
-
:param maxdepth: Max depth of an equation. You can use both maxsize and maxdepth. maxdepth is by default set to = maxsize, which means that it is redundant.
|
235 |
-
:type maxdepth: int
|
236 |
-
:param fast_cycle: (experimental) - batch over population subsamples. This is a slightly different algorithm than regularized evolution, but does cycles 15% faster. May be algorithmically less efficient.
|
237 |
-
:type fast_cycle: bool
|
238 |
-
:param variable_names: a list of names for the variables, other than "x0", "x1", etc.
|
239 |
-
:type variable_names: list
|
240 |
-
:param batching: whether to compare population members on small batches during evolution. Still uses full dataset for comparing against hall of fame.
|
241 |
-
:type batching: bool
|
242 |
-
:param batchSize: the amount of data to use if doing batching.
|
243 |
-
:type batchSize: int
|
244 |
-
:param select_k_features: whether to run feature selection in Python using random forests, before passing to the symbolic regression code. None means no feature selection; an int means select that many features.
|
245 |
-
:type select_k_features: None/int
|
246 |
-
:param warmupMaxsizeBy: whether to slowly increase max size from a small number up to the maxsize (if greater than 0). If greater than 0, says the fraction of training time at which the current maxsize will reach the user-passed maxsize.
|
247 |
-
:type warmupMaxsizeBy: float
|
248 |
-
:param constraints: dictionary of int (unary) or 2-tuples (binary), this enforces maxsize constraints on the individual arguments of operators. E.g., `'pow': (-1, 1)` says that power laws can have any complexity left argument, but only 1 complexity exponent. Use this to force more interpretable solutions.
|
249 |
-
:type constraints: dict
|
250 |
-
:param useFrequency: whether to measure the frequency of complexities, and use that instead of parsimony to explore equation space. Will naturally find equations of all complexities.
|
251 |
-
:type useFrequency: bool
|
252 |
-
:param tempdir: directory for the temporary files
|
253 |
-
:type tempdir: str/None
|
254 |
-
:param delete_tempfiles: whether to delete the temporary files after finishing
|
255 |
-
:type delete_tempfiles: bool
|
256 |
-
:param julia_project: a Julia environment location containing a Project.toml (and potentially the source code for SymbolicRegression.jl). Default gives the Python package directory, where a Project.toml file should be present from the install.
|
257 |
-
:type julia_project: str/None
|
258 |
-
:param update: Whether to automatically update Julia packages.
|
259 |
-
:type update: bool
|
260 |
-
:param temp_equation_file: Whether to put the hall of fame file in the temp directory. Deletion is then controlled with the delete_tempfiles argument.
|
261 |
-
:type temp_equation_file: bool
|
262 |
-
:param output_jax_format: Whether to create a 'jax_format' column in the output, containing jax-callable functions and the default parameters in a jax array.
|
263 |
-
:type output_jax_format: bool
|
264 |
-
:param output_torch_format: Whether to create a 'torch_format' column in the output, containing a torch module with trainable parameters.
|
265 |
-
:type output_torch_format: bool
|
266 |
-
:param tournament_selection_n: Number of expressions to consider in each tournament.
|
267 |
-
:type tournament_selection_n: int
|
268 |
-
:param tournament_selection_p: Probability of selecting the best expression in each tournament. The probability will decay as p*(1-p)^n for other expressions, sorted by loss.
|
269 |
-
:type tournament_selection_p: float
|
270 |
-
:param denoise: Whether to use a Gaussian Process to denoise the data before inputting to PySR. Can help PySR fit noisy data.
|
271 |
-
:type denoise: bool
|
272 |
-
:param precision: What precision to use for the data. By default this is 32 (float32), but you can select 64 or 16 as well.
|
273 |
-
:type precision: int
|
274 |
-
:param multithreading: Use multithreading instead of distributed backend. Default is yes. Using procs=0 will turn off both.
|
275 |
-
:type multithreading: bool
|
276 |
-
:param **kwargs: Other options passed to SymbolicRegression.Options, for example, if you modify SymbolicRegression.jl to include additional arguments.
|
277 |
-
:type **kwargs: dict
|
278 |
-
:returns: Results dataframe, giving complexity, MSE, and equations (as strings), as well as functional forms. If list, each element corresponds to a dataframe of equations for each output.
|
279 |
-
:type: pd.DataFrame/list
|
280 |
-
"""
|
281 |
-
global already_ran
|
282 |
-
|
283 |
-
if binary_operators is None:
|
284 |
-
binary_operators = "+ * - /".split(" ")
|
285 |
-
if unary_operators is None:
|
286 |
-
unary_operators = []
|
287 |
-
if extra_sympy_mappings is None:
|
288 |
-
extra_sympy_mappings = {}
|
289 |
-
if variable_names is None:
|
290 |
-
variable_names = []
|
291 |
-
if constraints is None:
|
292 |
-
constraints = {}
|
293 |
-
if multithreading is None:
|
294 |
-
# Default is multithreading=True, unless explicitly set,
|
295 |
-
# or procs is set to 0 (serial mode).
|
296 |
-
multithreading = procs != 0
|
297 |
-
|
298 |
-
global Main
|
299 |
-
if Main is None:
|
300 |
-
if multithreading:
|
301 |
-
os.environ["JULIA_NUM_THREADS"] = str(procs)
|
302 |
-
|
303 |
-
Main = init_julia()
|
304 |
-
|
305 |
-
buffer_available = "buffer" in sys.stdout.__dir__()
|
306 |
-
|
307 |
-
if progress is not None:
|
308 |
-
if progress and not buffer_available:
|
309 |
-
warnings.warn(
|
310 |
-
"Note: it looks like you are running in Jupyter. The progress bar will be turned off."
|
311 |
-
)
|
312 |
-
progress = False
|
313 |
-
else:
|
314 |
-
progress = buffer_available
|
315 |
-
|
316 |
-
assert optimizer_algorithm in ["NelderMead", "BFGS"]
|
317 |
-
assert tournament_selection_n < npop
|
318 |
-
|
319 |
-
if isinstance(X, pd.DataFrame):
|
320 |
-
variable_names = list(X.columns)
|
321 |
-
X = np.array(X)
|
322 |
-
|
323 |
-
if len(X.shape) == 1:
|
324 |
-
X = X[:, None]
|
325 |
-
|
326 |
-
assert not isinstance(y, pd.DataFrame)
|
327 |
-
|
328 |
-
if len(variable_names) == 0:
|
329 |
-
variable_names = [f"x{i}" for i in range(X.shape[1])]
|
330 |
-
|
331 |
-
if extra_jax_mappings is not None:
|
332 |
-
for value in extra_jax_mappings.values():
|
333 |
-
if not isinstance(value, str):
|
334 |
-
raise NotImplementedError(
|
335 |
-
"extra_jax_mappings must have keys that are strings! e.g., {sympy.sqrt: 'jnp.sqrt'}."
|
336 |
-
)
|
337 |
-
|
338 |
-
if extra_torch_mappings is not None:
|
339 |
-
for value in extra_jax_mappings.values():
|
340 |
-
if not callable(value):
|
341 |
-
raise NotImplementedError(
|
342 |
-
"extra_torch_mappings must be callable functions! e.g., {sympy.sqrt: torch.sqrt}."
|
343 |
-
)
|
344 |
-
|
345 |
-
use_custom_variable_names = len(variable_names) != 0
|
346 |
-
# TODO: this is always true.
|
347 |
-
|
348 |
-
_check_assertions(
|
349 |
-
X,
|
350 |
-
binary_operators,
|
351 |
-
unary_operators,
|
352 |
-
use_custom_variable_names,
|
353 |
-
variable_names,
|
354 |
-
weights,
|
355 |
-
y,
|
356 |
-
)
|
357 |
-
|
358 |
-
if len(X) > 10000 and not batching:
|
359 |
-
warnings.warn(
|
360 |
-
"Note: you are running with more than 10,000 datapoints. You should consider turning on batching (https://pysr.readthedocs.io/en/latest/docs/options/#batching). You should also reconsider if you need that many datapoints. Unless you have a large amount of noise (in which case you should smooth your dataset first), generally < 10,000 datapoints is enough to find a functional form with symbolic regression. More datapoints will lower the search speed."
|
361 |
-
)
|
362 |
-
|
363 |
-
if maxsize > 40:
|
364 |
-
warnings.warn(
|
365 |
-
"Note: Using a large maxsize for the equation search will be exponentially slower and use significant memory. You should consider turning `useFrequency` to False, and perhaps use `warmupMaxsizeBy`."
|
366 |
-
)
|
367 |
-
if maxsize < 7:
|
368 |
-
raise NotImplementedError("PySR requires a maxsize of at least 7")
|
369 |
-
|
370 |
-
X, selection = _handle_feature_selection(X, select_k_features, y, variable_names)
|
371 |
-
|
372 |
-
if maxdepth is None:
|
373 |
-
maxdepth = maxsize
|
374 |
-
if isinstance(binary_operators, str):
|
375 |
-
binary_operators = [binary_operators]
|
376 |
-
if isinstance(unary_operators, str):
|
377 |
-
unary_operators = [unary_operators]
|
378 |
-
|
379 |
-
if len(y.shape) == 1 or (len(y.shape) == 2 and y.shape[1] == 1):
|
380 |
-
multioutput = False
|
381 |
-
nout = 1
|
382 |
-
y = y.reshape(-1)
|
383 |
-
elif len(y.shape) == 2:
|
384 |
-
multioutput = True
|
385 |
-
nout = y.shape[1]
|
386 |
-
else:
|
387 |
-
raise NotImplementedError("y shape not supported!")
|
388 |
-
|
389 |
-
if denoise:
|
390 |
-
if weights is not None:
|
391 |
-
raise NotImplementedError(
|
392 |
-
"No weights for denoising - the weights are learned."
|
393 |
-
)
|
394 |
-
if Xresampled is not None:
|
395 |
-
# Select among only the selected features:
|
396 |
-
if isinstance(Xresampled, pd.DataFrame):
|
397 |
-
# Handle Xresampled is pandas dataframe
|
398 |
-
if selection is not None:
|
399 |
-
Xresampled = Xresampled[[variable_names[i] for i in selection]]
|
400 |
-
else:
|
401 |
-
Xresampled = Xresampled[variable_names]
|
402 |
-
Xresampled = np.array(Xresampled)
|
403 |
-
else:
|
404 |
-
if selection is not None:
|
405 |
-
Xresampled = Xresampled[:, selection]
|
406 |
-
if multioutput:
|
407 |
-
y = np.stack(
|
408 |
-
[_denoise(X, y[:, i], Xresampled=Xresampled)[1] for i in range(nout)],
|
409 |
-
axis=1,
|
410 |
-
)
|
411 |
-
if Xresampled is not None:
|
412 |
-
X = Xresampled
|
413 |
-
else:
|
414 |
-
X, y = _denoise(X, y, Xresampled=Xresampled)
|
415 |
-
|
416 |
-
julia_project = _get_julia_project(julia_project)
|
417 |
-
|
418 |
-
tmpdir = Path(tempfile.mkdtemp(dir=tempdir))
|
419 |
-
|
420 |
-
if temp_equation_file:
|
421 |
-
equation_file = tmpdir / "hall_of_fame.csv"
|
422 |
-
elif equation_file is None:
|
423 |
-
date_time = datetime.now().strftime("%Y-%m-%d_%H%M%S.%f")[:-3]
|
424 |
-
equation_file = "hall_of_fame_" + date_time + ".csv"
|
425 |
-
|
426 |
-
_create_inline_operators(
|
427 |
-
binary_operators=binary_operators, unary_operators=unary_operators
|
428 |
-
)
|
429 |
-
_handle_constraints(
|
430 |
-
binary_operators=binary_operators,
|
431 |
-
unary_operators=unary_operators,
|
432 |
-
constraints=constraints,
|
433 |
-
)
|
434 |
-
|
435 |
-
una_constraints = [constraints[op] for op in unary_operators]
|
436 |
-
bin_constraints = [constraints[op] for op in binary_operators]
|
437 |
-
|
438 |
-
try:
|
439 |
-
# TODO: is this needed since Julia now prints directly to stdout?
|
440 |
-
term_width = shutil.get_terminal_size().columns
|
441 |
-
except:
|
442 |
-
_, term_width = subprocess.check_output(["stty", "size"]).split()
|
443 |
-
|
444 |
-
if not already_ran:
|
445 |
-
from julia import Pkg
|
446 |
-
|
447 |
-
Pkg.activate(f"{_escape_filename(julia_project)}")
|
448 |
-
try:
|
449 |
-
if update:
|
450 |
-
Pkg.resolve()
|
451 |
-
Pkg.instantiate()
|
452 |
-
else:
|
453 |
-
Pkg.instantiate()
|
454 |
-
except RuntimeError as e:
|
455 |
-
raise ImportError(
|
456 |
-
f"""
|
457 |
-
Required dependencies are not installed or built. Run the following code in the Python REPL:
|
458 |
-
|
459 |
-
>>> import pysr
|
460 |
-
>>> pysr.install()
|
461 |
-
|
462 |
-
Tried to activate project {julia_project} but failed."""
|
463 |
-
) from e
|
464 |
-
Main.eval("using SymbolicRegression")
|
465 |
-
|
466 |
-
Main.plus = Main.eval("(+)")
|
467 |
-
Main.sub = Main.eval("(-)")
|
468 |
-
Main.mult = Main.eval("(*)")
|
469 |
-
Main.pow = Main.eval("(^)")
|
470 |
-
Main.div = Main.eval("(/)")
|
471 |
-
|
472 |
-
Main.custom_loss = Main.eval(loss)
|
473 |
-
|
474 |
-
mutationWeights = [
|
475 |
-
float(weightMutateConstant),
|
476 |
-
float(weightMutateOperator),
|
477 |
-
float(weightAddNode),
|
478 |
-
float(weightInsertNode),
|
479 |
-
float(weightDeleteNode),
|
480 |
-
float(weightSimplify),
|
481 |
-
float(weightRandomize),
|
482 |
-
float(weightDoNothing),
|
483 |
-
]
|
484 |
-
|
485 |
-
options = Main.Options(
|
486 |
-
binary_operators=Main.eval(str(tuple(binary_operators)).replace("'", "")),
|
487 |
-
unary_operators=Main.eval(str(tuple(unary_operators)).replace("'", "")),
|
488 |
-
bin_constraints=bin_constraints,
|
489 |
-
una_constraints=una_constraints,
|
490 |
-
parsimony=float(parsimony),
|
491 |
-
loss=Main.custom_loss,
|
492 |
-
alpha=float(alpha),
|
493 |
-
maxsize=int(maxsize),
|
494 |
-
maxdepth=int(maxdepth),
|
495 |
-
fast_cycle=fast_cycle,
|
496 |
-
migration=migration,
|
497 |
-
hofMigration=hofMigration,
|
498 |
-
fractionReplacedHof=float(fractionReplacedHof),
|
499 |
-
shouldOptimizeConstants=shouldOptimizeConstants,
|
500 |
-
hofFile=_escape_filename(equation_file),
|
501 |
-
npopulations=int(populations),
|
502 |
-
optimizer_algorithm=optimizer_algorithm,
|
503 |
-
optimizer_nrestarts=int(optimizer_nrestarts),
|
504 |
-
optimize_probability=float(optimize_probability),
|
505 |
-
optimizer_iterations=int(optimizer_iterations),
|
506 |
-
perturbationFactor=float(perturbationFactor),
|
507 |
-
annealing=annealing,
|
508 |
-
batching=batching,
|
509 |
-
batchSize=int(min([batchSize, len(X)]) if batching else len(X)),
|
510 |
-
mutationWeights=mutationWeights,
|
511 |
-
warmupMaxsizeBy=float(warmupMaxsizeBy),
|
512 |
-
useFrequency=useFrequency,
|
513 |
-
npop=int(npop),
|
514 |
-
ns=int(tournament_selection_n),
|
515 |
-
probPickFirst=float(tournament_selection_p),
|
516 |
-
ncyclesperiteration=int(ncyclesperiteration),
|
517 |
-
fractionReplaced=float(fractionReplaced),
|
518 |
-
topn=int(topn),
|
519 |
-
verbosity=int(verbosity),
|
520 |
-
progress=progress,
|
521 |
-
terminal_width=int(term_width),
|
522 |
-
**kwargs,
|
523 |
-
)
|
524 |
-
|
525 |
-
np_dtype = {16: np.float16, 32: np.float32, 64: np.float64}[precision]
|
526 |
-
|
527 |
-
Main.X = np.array(X, dtype=np_dtype).T
|
528 |
-
if len(y.shape) == 1:
|
529 |
-
Main.y = np.array(y, dtype=np_dtype)
|
530 |
-
else:
|
531 |
-
Main.y = np.array(y, dtype=np_dtype).T
|
532 |
-
if weights is not None:
|
533 |
-
if len(weights.shape) == 1:
|
534 |
-
Main.weights = np.array(weights, dtype=np_dtype)
|
535 |
-
else:
|
536 |
-
Main.weights = np.array(weights, dtype=np_dtype).T
|
537 |
-
else:
|
538 |
-
Main.weights = None
|
539 |
-
|
540 |
-
cprocs = 0 if multithreading else procs
|
541 |
-
|
542 |
-
raw_julia_output = Main.EquationSearch(
|
543 |
-
Main.X,
|
544 |
-
Main.y,
|
545 |
-
weights=Main.weights,
|
546 |
-
niterations=int(niterations),
|
547 |
-
varMap=(
|
548 |
-
variable_names
|
549 |
-
if selection is None
|
550 |
-
else [variable_names[i] for i in selection]
|
551 |
-
),
|
552 |
-
options=options,
|
553 |
-
numprocs=int(cprocs),
|
554 |
-
multithreading=bool(multithreading),
|
555 |
-
)
|
556 |
-
|
557 |
-
_set_globals(
|
558 |
-
X=X,
|
559 |
-
equation_file=equation_file,
|
560 |
-
variable_names=variable_names,
|
561 |
-
extra_sympy_mappings=extra_sympy_mappings,
|
562 |
-
extra_torch_mappings=extra_torch_mappings,
|
563 |
-
extra_jax_mappings=extra_jax_mappings,
|
564 |
-
output_jax_format=output_jax_format,
|
565 |
-
output_torch_format=output_torch_format,
|
566 |
-
multioutput=multioutput,
|
567 |
-
nout=nout,
|
568 |
-
selection=selection,
|
569 |
-
raw_julia_output=raw_julia_output,
|
570 |
-
)
|
571 |
-
|
572 |
-
equations = get_hof(
|
573 |
-
equation_file=equation_file,
|
574 |
-
n_features=X.shape[1],
|
575 |
-
variable_names=variable_names,
|
576 |
-
output_jax_format=output_jax_format,
|
577 |
-
output_torch_format=output_torch_format,
|
578 |
-
selection=selection,
|
579 |
-
extra_sympy_mappings=extra_sympy_mappings,
|
580 |
-
extra_jax_mappings=extra_jax_mappings,
|
581 |
-
extra_torch_mappings=extra_torch_mappings,
|
582 |
-
multioutput=multioutput,
|
583 |
-
nout=nout,
|
584 |
)
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
already_ran = True
|
590 |
-
|
591 |
-
return equations
|
592 |
-
|
593 |
-
|
594 |
-
def _set_globals(
|
595 |
-
*,
|
596 |
-
equation_file,
|
597 |
-
variable_names,
|
598 |
-
extra_sympy_mappings,
|
599 |
-
extra_torch_mappings,
|
600 |
-
extra_jax_mappings,
|
601 |
-
output_jax_format,
|
602 |
-
output_torch_format,
|
603 |
-
multioutput,
|
604 |
-
nout,
|
605 |
-
selection,
|
606 |
-
raw_julia_output,
|
607 |
-
X=None,
|
608 |
-
n_features=None
|
609 |
-
):
|
610 |
-
global global_state
|
611 |
-
|
612 |
-
if n_features is None and X is not None:
|
613 |
-
global_state["n_features"] = X.shape[1]
|
614 |
-
elif X is None and n_features is not None:
|
615 |
-
global_state["n_features"] = n_features
|
616 |
-
elif X is not None and n_features is not None:
|
617 |
-
assert X.shape[1] == n_features
|
618 |
-
global_state["n_features"] = n_features
|
619 |
-
|
620 |
-
global_state["equation_file"] = equation_file
|
621 |
-
global_state["variable_names"] = variable_names
|
622 |
-
global_state["extra_sympy_mappings"] = extra_sympy_mappings
|
623 |
-
global_state["extra_torch_mappings"] = extra_torch_mappings
|
624 |
-
global_state["extra_jax_mappings"] = extra_jax_mappings
|
625 |
-
global_state["output_jax_format"] = output_jax_format
|
626 |
-
global_state["output_torch_format"] = output_torch_format
|
627 |
-
global_state["multioutput"] = multioutput
|
628 |
-
global_state["nout"] = nout
|
629 |
-
global_state["selection"] = selection
|
630 |
-
global_state["raw_julia_output"] = raw_julia_output
|
631 |
|
632 |
|
633 |
def _handle_constraints(binary_operators, unary_operators, constraints):
|
@@ -654,6 +114,7 @@ def _handle_constraints(binary_operators, unary_operators, constraints):
|
|
654 |
|
655 |
|
656 |
def _create_inline_operators(binary_operators, unary_operators):
|
|
|
657 |
for op_list in [binary_operators, unary_operators]:
|
658 |
for i, op in enumerate(op_list):
|
659 |
is_user_defined_operator = "(" in op
|
@@ -718,215 +179,6 @@ def run_feature_selection(X, y, select_k_features):
|
|
718 |
return selector.get_support(indices=True)
|
719 |
|
720 |
|
721 |
-
def get_hof(
|
722 |
-
equation_file=None,
|
723 |
-
n_features=None,
|
724 |
-
variable_names=None,
|
725 |
-
output_jax_format=None,
|
726 |
-
output_torch_format=None,
|
727 |
-
selection=None,
|
728 |
-
extra_sympy_mappings=None,
|
729 |
-
extra_jax_mappings=None,
|
730 |
-
extra_torch_mappings=None,
|
731 |
-
multioutput=None,
|
732 |
-
nout=None,
|
733 |
-
**kwargs,
|
734 |
-
):
|
735 |
-
"""Get the equations from a hall of fame file. If no arguments
|
736 |
-
entered, the ones used previously from a call to PySR will be used."""
|
737 |
-
|
738 |
-
global global_state
|
739 |
-
|
740 |
-
if equation_file is None:
|
741 |
-
equation_file = global_state["equation_file"]
|
742 |
-
if n_features is None:
|
743 |
-
n_features = global_state["n_features"]
|
744 |
-
if variable_names is None:
|
745 |
-
variable_names = global_state["variable_names"]
|
746 |
-
if extra_sympy_mappings is None:
|
747 |
-
extra_sympy_mappings = global_state["extra_sympy_mappings"]
|
748 |
-
if extra_jax_mappings is None:
|
749 |
-
extra_jax_mappings = global_state["extra_jax_mappings"]
|
750 |
-
if extra_torch_mappings is None:
|
751 |
-
extra_torch_mappings = global_state["extra_torch_mappings"]
|
752 |
-
if output_torch_format is None:
|
753 |
-
output_torch_format = global_state["output_torch_format"]
|
754 |
-
if output_jax_format is None:
|
755 |
-
output_jax_format = global_state["output_jax_format"]
|
756 |
-
if multioutput is None:
|
757 |
-
multioutput = global_state["multioutput"]
|
758 |
-
if nout is None:
|
759 |
-
nout = global_state["nout"]
|
760 |
-
if selection is None:
|
761 |
-
selection = global_state["selection"]
|
762 |
-
|
763 |
-
global_state["selection"] = selection
|
764 |
-
global_state["equation_file"] = equation_file
|
765 |
-
global_state["n_features"] = n_features
|
766 |
-
global_state["variable_names"] = variable_names
|
767 |
-
global_state["extra_sympy_mappings"] = extra_sympy_mappings
|
768 |
-
global_state["extra_jax_mappings"] = extra_jax_mappings
|
769 |
-
global_state["extra_torch_mappings"] = extra_torch_mappings
|
770 |
-
global_state["output_torch_format"] = output_torch_format
|
771 |
-
global_state["output_jax_format"] = output_jax_format
|
772 |
-
global_state["multioutput"] = multioutput
|
773 |
-
global_state["nout"] = nout
|
774 |
-
global_state["selection"] = selection
|
775 |
-
|
776 |
-
try:
|
777 |
-
if multioutput:
|
778 |
-
all_outputs = [
|
779 |
-
pd.read_csv(str(equation_file) + f".out{i}" + ".bkup", sep="|")
|
780 |
-
for i in range(1, nout + 1)
|
781 |
-
]
|
782 |
-
else:
|
783 |
-
all_outputs = [pd.read_csv(str(equation_file) + ".bkup", sep="|")]
|
784 |
-
except FileNotFoundError:
|
785 |
-
raise RuntimeError(
|
786 |
-
"Couldn't find equation file! The equation search likely exited before a single iteration completed."
|
787 |
-
)
|
788 |
-
|
789 |
-
ret_outputs = []
|
790 |
-
|
791 |
-
for output in all_outputs:
|
792 |
-
|
793 |
-
scores = []
|
794 |
-
lastMSE = None
|
795 |
-
lastComplexity = 0
|
796 |
-
sympy_format = []
|
797 |
-
lambda_format = []
|
798 |
-
if output_jax_format:
|
799 |
-
jax_format = []
|
800 |
-
if output_torch_format:
|
801 |
-
torch_format = []
|
802 |
-
use_custom_variable_names = len(variable_names) != 0
|
803 |
-
local_sympy_mappings = {**extra_sympy_mappings, **sympy_mappings}
|
804 |
-
|
805 |
-
if use_custom_variable_names:
|
806 |
-
sympy_symbols = [sympy.Symbol(variable_names[i]) for i in range(n_features)]
|
807 |
-
else:
|
808 |
-
sympy_symbols = [sympy.Symbol("x%d" % i) for i in range(n_features)]
|
809 |
-
|
810 |
-
for _, eqn_row in output.iterrows():
|
811 |
-
eqn = sympify(eqn_row["Equation"], locals=local_sympy_mappings)
|
812 |
-
sympy_format.append(eqn)
|
813 |
-
|
814 |
-
# Numpy:
|
815 |
-
lambda_format.append(
|
816 |
-
CallableEquation(sympy_symbols, eqn, selection, variable_names)
|
817 |
-
)
|
818 |
-
|
819 |
-
# JAX:
|
820 |
-
if output_jax_format:
|
821 |
-
from .export_jax import sympy2jax
|
822 |
-
|
823 |
-
func, params = sympy2jax(
|
824 |
-
eqn,
|
825 |
-
sympy_symbols,
|
826 |
-
selection=selection,
|
827 |
-
extra_jax_mappings=extra_jax_mappings,
|
828 |
-
)
|
829 |
-
jax_format.append({"callable": func, "parameters": params})
|
830 |
-
|
831 |
-
# Torch:
|
832 |
-
if output_torch_format:
|
833 |
-
from .export_torch import sympy2torch
|
834 |
-
|
835 |
-
module = sympy2torch(
|
836 |
-
eqn,
|
837 |
-
sympy_symbols,
|
838 |
-
selection=selection,
|
839 |
-
extra_torch_mappings=extra_torch_mappings,
|
840 |
-
)
|
841 |
-
torch_format.append(module)
|
842 |
-
|
843 |
-
curMSE = eqn_row["MSE"]
|
844 |
-
curComplexity = eqn_row["Complexity"]
|
845 |
-
|
846 |
-
if lastMSE is None:
|
847 |
-
cur_score = 0.0
|
848 |
-
else:
|
849 |
-
if curMSE > 0.0:
|
850 |
-
cur_score = -np.log(curMSE / lastMSE) / (
|
851 |
-
curComplexity - lastComplexity
|
852 |
-
)
|
853 |
-
else:
|
854 |
-
cur_score = np.inf
|
855 |
-
|
856 |
-
scores.append(cur_score)
|
857 |
-
lastMSE = curMSE
|
858 |
-
lastComplexity = curComplexity
|
859 |
-
|
860 |
-
output["score"] = np.array(scores)
|
861 |
-
output["sympy_format"] = sympy_format
|
862 |
-
output["lambda_format"] = lambda_format
|
863 |
-
output_cols = [
|
864 |
-
"Complexity",
|
865 |
-
"MSE",
|
866 |
-
"score",
|
867 |
-
"Equation",
|
868 |
-
"sympy_format",
|
869 |
-
"lambda_format",
|
870 |
-
]
|
871 |
-
if output_jax_format:
|
872 |
-
output_cols += ["jax_format"]
|
873 |
-
output["jax_format"] = jax_format
|
874 |
-
if output_torch_format:
|
875 |
-
output_cols += ["torch_format"]
|
876 |
-
output["torch_format"] = torch_format
|
877 |
-
|
878 |
-
ret_outputs.append(output[output_cols])
|
879 |
-
|
880 |
-
if multioutput:
|
881 |
-
return ret_outputs
|
882 |
-
return ret_outputs[0]
|
883 |
-
|
884 |
-
|
885 |
-
def best_row(equations=None):
|
886 |
-
"""Return the best row of a hall of fame file using the score column.
|
887 |
-
By default this uses the last equation file.
|
888 |
-
"""
|
889 |
-
if equations is None:
|
890 |
-
equations = get_hof()
|
891 |
-
if isinstance(equations, list):
|
892 |
-
return [eq.iloc[np.argmax(eq["score"])] for eq in equations]
|
893 |
-
return equations.iloc[np.argmax(equations["score"])]
|
894 |
-
|
895 |
-
|
896 |
-
def best_tex(equations=None):
|
897 |
-
"""Return the equation with the best score, in latex format
|
898 |
-
By default this uses the last equation file.
|
899 |
-
"""
|
900 |
-
if equations is None:
|
901 |
-
equations = get_hof()
|
902 |
-
if isinstance(equations, list):
|
903 |
-
return [
|
904 |
-
sympy.latex(best_row(eq)["sympy_format"].simplify()) for eq in equations
|
905 |
-
]
|
906 |
-
return sympy.latex(best_row(equations)["sympy_format"].simplify())
|
907 |
-
|
908 |
-
|
909 |
-
def best(equations=None):
|
910 |
-
"""Return the equation with the best score, in sympy format.
|
911 |
-
By default this uses the last equation file.
|
912 |
-
"""
|
913 |
-
if equations is None:
|
914 |
-
equations = get_hof()
|
915 |
-
if isinstance(equations, list):
|
916 |
-
return [best_row(eq)["sympy_format"].simplify() for eq in equations]
|
917 |
-
return best_row(equations)["sympy_format"].simplify()
|
918 |
-
|
919 |
-
|
920 |
-
def best_callable(equations=None):
|
921 |
-
"""Return the equation with the best score, in callable format.
|
922 |
-
By default this uses the last equation file.
|
923 |
-
"""
|
924 |
-
if equations is None:
|
925 |
-
equations = get_hof()
|
926 |
-
if isinstance(equations, list):
|
927 |
-
return [best_row(eq)["lambda_format"] for eq in equations]
|
928 |
-
return best_row(equations)["lambda_format"]
|
929 |
-
|
930 |
|
931 |
def _escape_filename(filename):
|
932 |
"""Turns a file into a string representation with correctly escaped backslashes"""
|
@@ -934,6 +186,14 @@ def _escape_filename(filename):
|
|
934 |
str_repr = str_repr.replace("\\", "\\\\")
|
935 |
return str_repr
|
936 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
937 |
|
938 |
# https://gist.github.com/garrettdreyfus/8153571
|
939 |
def _yesno(question):
|
@@ -1061,3 +321,844 @@ julia = "1.5"
|
|
1061 |
|
1062 |
project_toml_path = tmp_dir / "Project.toml"
|
1063 |
project_toml_path.write_text(project_toml)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
from datetime import datetime
|
12 |
import warnings
|
13 |
from multiprocessing import cpu_count
|
14 |
+
from sklearn.base import BaseEstimator, RegressorMixin
|
15 |
|
16 |
is_julia_warning_silenced = False
|
17 |
|
|
|
37 |
|
38 |
|
39 |
Main = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
already_ran = False
|
42 |
|
|
|
80 |
}
|
81 |
|
82 |
|
83 |
+
def pysr(X, y, weights=None, **kwargs):
|
84 |
+
warnings.warn(
|
85 |
+
"Calling `pysr` is deprecated. Please use `model = PySRRegressor(**params); model.fit(X, y)` going forward.",
|
86 |
+
DeprecationWarning,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
)
|
88 |
+
model = PySRRegressor(**kwargs)
|
89 |
+
model.fit(X, y, weights=weights)
|
90 |
+
return model.equations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
|
93 |
def _handle_constraints(binary_operators, unary_operators, constraints):
|
|
|
114 |
|
115 |
|
116 |
def _create_inline_operators(binary_operators, unary_operators):
|
117 |
+
global Main
|
118 |
for op_list in [binary_operators, unary_operators]:
|
119 |
for i, op in enumerate(op_list):
|
120 |
is_user_defined_operator = "(" in op
|
|
|
179 |
return selector.get_support(indices=True)
|
180 |
|
181 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
def _escape_filename(filename):
|
184 |
"""Turns a file into a string representation with correctly escaped backslashes"""
|
|
|
186 |
str_repr = str_repr.replace("\\", "\\\\")
|
187 |
return str_repr
|
188 |
|
189 |
+
def best(*args, **kwargs):
|
190 |
+
raise NotImplementedError("`best` has been deprecated. Please use the `PySRRegressor` interface. After fitting, you can return `.sympy()` to get the sympy representation of the best equation.")
|
191 |
+
|
192 |
+
def best_tex(*args, **kwargs):
|
193 |
+
raise NotImplementedError("`best_tex` has been deprecated. Please use the `PySRRegressor` interface. After fitting, you can return `.latex()` to get the sympy representation of the best equation.")
|
194 |
+
|
195 |
+
def best_callable(*args, **kwargs):
|
196 |
+
raise NotImplementedError("`best_callable` has been deprecated. Please use the `PySRRegressor` interface. After fitting, you can use `.predict(X)` to use the best callable.")
|
197 |
|
198 |
# https://gist.github.com/garrettdreyfus/8153571
|
199 |
def _yesno(question):
|
|
|
321 |
|
322 |
project_toml_path = tmp_dir / "Project.toml"
|
323 |
project_toml_path.write_text(project_toml)
|
324 |
+
|
325 |
+
|
326 |
+
class PySRRegressor(BaseEstimator, RegressorMixin):
|
327 |
+
def __init__(
|
328 |
+
self,
|
329 |
+
model_selection="accuracy",
|
330 |
+
weights=None,
|
331 |
+
binary_operators=None,
|
332 |
+
unary_operators=None,
|
333 |
+
procs=cpu_count(),
|
334 |
+
loss="L2DistLoss()",
|
335 |
+
populations=20,
|
336 |
+
niterations=100,
|
337 |
+
ncyclesperiteration=300,
|
338 |
+
alpha=0.1,
|
339 |
+
annealing=False,
|
340 |
+
fractionReplaced=0.10,
|
341 |
+
fractionReplacedHof=0.10,
|
342 |
+
npop=1000,
|
343 |
+
parsimony=1e-4,
|
344 |
+
migration=True,
|
345 |
+
hofMigration=True,
|
346 |
+
shouldOptimizeConstants=True,
|
347 |
+
topn=10,
|
348 |
+
weightAddNode=1,
|
349 |
+
weightInsertNode=3,
|
350 |
+
weightDeleteNode=3,
|
351 |
+
weightDoNothing=1,
|
352 |
+
weightMutateConstant=10,
|
353 |
+
weightMutateOperator=1,
|
354 |
+
weightRandomize=1,
|
355 |
+
weightSimplify=0.002,
|
356 |
+
perturbationFactor=1.0,
|
357 |
+
extra_sympy_mappings=None,
|
358 |
+
extra_torch_mappings=None,
|
359 |
+
extra_jax_mappings=None,
|
360 |
+
equation_file=None,
|
361 |
+
verbosity=1e9,
|
362 |
+
progress=None,
|
363 |
+
maxsize=20,
|
364 |
+
fast_cycle=False,
|
365 |
+
maxdepth=None,
|
366 |
+
variable_names=None,
|
367 |
+
batching=False,
|
368 |
+
batchSize=50,
|
369 |
+
select_k_features=None,
|
370 |
+
warmupMaxsizeBy=0.0,
|
371 |
+
constraints=None,
|
372 |
+
useFrequency=True,
|
373 |
+
tempdir=None,
|
374 |
+
delete_tempfiles=True,
|
375 |
+
julia_project=None,
|
376 |
+
update=True,
|
377 |
+
temp_equation_file=False,
|
378 |
+
output_jax_format=False,
|
379 |
+
output_torch_format=False,
|
380 |
+
optimizer_algorithm="BFGS",
|
381 |
+
optimizer_nrestarts=3,
|
382 |
+
optimize_probability=1.0,
|
383 |
+
optimizer_iterations=10,
|
384 |
+
tournament_selection_n=10,
|
385 |
+
tournament_selection_p=1.0,
|
386 |
+
denoise=False,
|
387 |
+
Xresampled=None,
|
388 |
+
precision=32,
|
389 |
+
multithreading=None,
|
390 |
+
**kwargs,
|
391 |
+
):
|
392 |
+
"""Initialize settings for an equation search in PySR.
|
393 |
+
|
394 |
+
Note: most default parameters have been tuned over several example
|
395 |
+
equations, but you should adjust `niterations`,
|
396 |
+
`binary_operators`, `unary_operators` to your requirements.
|
397 |
+
You can view more detailed explanations of the options on the
|
398 |
+
[options page](https://pysr.readthedocs.io/en/latest/docs/options/) of the documentation.
|
399 |
+
|
400 |
+
:param model_selection: How to select a model. Can be 'accuracy' or 'best'. 'best' will optimize a combination of complexity and accuracy.
|
401 |
+
:type model_selection: str
|
402 |
+
:param binary_operators: List of strings giving the binary operators in Julia's Base. Default is ["+", "-", "*", "/",].
|
403 |
+
:type binary_operators: list
|
404 |
+
:param unary_operators: Same but for operators taking a single scalar. Default is [].
|
405 |
+
:type unary_operators: list
|
406 |
+
:param procs: Number of processes (=number of populations running).
|
407 |
+
:type procs: int
|
408 |
+
:param loss: String of Julia code specifying the loss function. Can either be a loss from LossFunctions.jl, or your own loss written as a function. Examples of custom written losses include: `myloss(x, y) = abs(x-y)` for non-weighted, or `myloss(x, y, w) = w*abs(x-y)` for weighted. Among the included losses, these are as follows. Regression: `LPDistLoss{P}()`, `L1DistLoss()`, `L2DistLoss()` (mean square), `LogitDistLoss()`, `HuberLoss(d)`, `L1EpsilonInsLoss(ϵ)`, `L2EpsilonInsLoss(ϵ)`, `PeriodicLoss(c)`, `QuantileLoss(τ)`. Classification: `ZeroOneLoss()`, `PerceptronLoss()`, `L1HingeLoss()`, `SmoothedL1HingeLoss(γ)`, `ModifiedHuberLoss()`, `L2MarginLoss()`, `ExpLoss()`, `SigmoidLoss()`, `DWDMarginLoss(q)`.
|
409 |
+
:type loss: str
|
410 |
+
:param populations: Number of populations running.
|
411 |
+
:type populations: int
|
412 |
+
:param niterations: Number of iterations of the algorithm to run. The best equations are printed, and migrate between populations, at the end of each.
|
413 |
+
:type niterations: int
|
414 |
+
:param ncyclesperiteration: Number of total mutations to run, per 10 samples of the population, per iteration.
|
415 |
+
:type ncyclesperiteration: int
|
416 |
+
:param alpha: Initial temperature.
|
417 |
+
:type alpha: float
|
418 |
+
:param annealing: Whether to use annealing. You should (and it is default).
|
419 |
+
:type annealing: bool
|
420 |
+
:param fractionReplaced: How much of population to replace with migrating equations from other populations.
|
421 |
+
:type fractionReplaced: float
|
422 |
+
:param fractionReplacedHof: How much of population to replace with migrating equations from hall of fame.
|
423 |
+
:type fractionReplacedHof: float
|
424 |
+
:param npop: Number of individuals in each population
|
425 |
+
:type npop: int
|
426 |
+
:param parsimony: Multiplicative factor for how much to punish complexity.
|
427 |
+
:type parsimony: float
|
428 |
+
:param migration: Whether to migrate.
|
429 |
+
:type migration: bool
|
430 |
+
:param hofMigration: Whether to have the hall of fame migrate.
|
431 |
+
:type hofMigration: bool
|
432 |
+
:param shouldOptimizeConstants: Whether to numerically optimize constants (Nelder-Mead/Newton) at the end of each iteration.
|
433 |
+
:type shouldOptimizeConstants: bool
|
434 |
+
:param topn: How many top individuals migrate from each population.
|
435 |
+
:type topn: int
|
436 |
+
:param perturbationFactor: Constants are perturbed by a max factor of (perturbationFactor*T + 1). Either multiplied by this or divided by this.
|
437 |
+
:type perturbationFactor: float
|
438 |
+
:param weightAddNode: Relative likelihood for mutation to add a node
|
439 |
+
:type weightAddNode: float
|
440 |
+
:param weightInsertNode: Relative likelihood for mutation to insert a node
|
441 |
+
:type weightInsertNode: float
|
442 |
+
:param weightDeleteNode: Relative likelihood for mutation to delete a node
|
443 |
+
:type weightDeleteNode: float
|
444 |
+
:param weightDoNothing: Relative likelihood for mutation to leave the individual
|
445 |
+
:type weightDoNothing: float
|
446 |
+
:param weightMutateConstant: Relative likelihood for mutation to change the constant slightly in a random direction.
|
447 |
+
:type weightMutateConstant: float
|
448 |
+
:param weightMutateOperator: Relative likelihood for mutation to swap an operator.
|
449 |
+
:type weightMutateOperator: float
|
450 |
+
:param weightRandomize: Relative likelihood for mutation to completely delete and then randomly generate the equation
|
451 |
+
:type weightRandomize: float
|
452 |
+
:param weightSimplify: Relative likelihood for mutation to simplify constant parts by evaluation
|
453 |
+
:type weightSimplify: float
|
454 |
+
:param equation_file: Where to save the files (.csv separated by |)
|
455 |
+
:type equation_file: str
|
456 |
+
:param verbosity: What verbosity level to use. 0 means minimal print statements.
|
457 |
+
:type verbosity: int
|
458 |
+
:param progress: Whether to use a progress bar instead of printing to stdout.
|
459 |
+
:type progress: bool
|
460 |
+
:param maxsize: Max size of an equation.
|
461 |
+
:type maxsize: int
|
462 |
+
:param maxdepth: Max depth of an equation. You can use both maxsize and maxdepth. maxdepth is by default set to = maxsize, which means that it is redundant.
|
463 |
+
:type maxdepth: int
|
464 |
+
:param fast_cycle: (experimental) - batch over population subsamples. This is a slightly different algorithm than regularized evolution, but does cycles 15% faster. May be algorithmically less efficient.
|
465 |
+
:type fast_cycle: bool
|
466 |
+
:param variable_names: a list of names for the variables, other than "x0", "x1", etc.
|
467 |
+
:type variable_names: list
|
468 |
+
:param batching: whether to compare population members on small batches during evolution. Still uses full dataset for comparing against hall of fame.
|
469 |
+
:type batching: bool
|
470 |
+
:param batchSize: the amount of data to use if doing batching.
|
471 |
+
:type batchSize: int
|
472 |
+
:param select_k_features: whether to run feature selection in Python using random forests, before passing to the symbolic regression code. None means no feature selection; an int means select that many features.
|
473 |
+
:type select_k_features: None/int
|
474 |
+
:param warmupMaxsizeBy: whether to slowly increase max size from a small number up to the maxsize (if greater than 0). If greater than 0, says the fraction of training time at which the current maxsize will reach the user-passed maxsize.
|
475 |
+
:type warmupMaxsizeBy: float
|
476 |
+
:param constraints: dictionary of int (unary) or 2-tuples (binary), this enforces maxsize constraints on the individual arguments of operators. E.g., `'pow': (-1, 1)` says that power laws can have any complexity left argument, but only 1 complexity exponent. Use this to force more interpretable solutions.
|
477 |
+
:type constraints: dict
|
478 |
+
:param useFrequency: whether to measure the frequency of complexities, and use that instead of parsimony to explore equation space. Will naturally find equations of all complexities.
|
479 |
+
:type useFrequency: bool
|
480 |
+
:param tempdir: directory for the temporary files
|
481 |
+
:type tempdir: str/None
|
482 |
+
:param delete_tempfiles: whether to delete the temporary files after finishing
|
483 |
+
:type delete_tempfiles: bool
|
484 |
+
:param julia_project: a Julia environment location containing a Project.toml (and potentially the source code for SymbolicRegression.jl). Default gives the Python package directory, where a Project.toml file should be present from the install.
|
485 |
+
:type julia_project: str/None
|
486 |
+
:param update: Whether to automatically update Julia packages.
|
487 |
+
:type update: bool
|
488 |
+
:param temp_equation_file: Whether to put the hall of fame file in the temp directory. Deletion is then controlled with the delete_tempfiles argument.
|
489 |
+
:type temp_equation_file: bool
|
490 |
+
:param output_jax_format: Whether to create a 'jax_format' column in the output, containing jax-callable functions and the default parameters in a jax array.
|
491 |
+
:type output_jax_format: bool
|
492 |
+
:param output_torch_format: Whether to create a 'torch_format' column in the output, containing a torch module with trainable parameters.
|
493 |
+
:type output_torch_format: bool
|
494 |
+
:param tournament_selection_n: Number of expressions to consider in each tournament.
|
495 |
+
:type tournament_selection_n: int
|
496 |
+
:param tournament_selection_p: Probability of selecting the best expression in each tournament. The probability will decay as p*(1-p)^n for other expressions, sorted by loss.
|
497 |
+
:type tournament_selection_p: float
|
498 |
+
:param denoise: Whether to use a Gaussian Process to denoise the data before inputting to PySR. Can help PySR fit noisy data.
|
499 |
+
:type denoise: bool
|
500 |
+
:param precision: What precision to use for the data. By default this is 32 (float32), but you can select 64 or 16 as well.
|
501 |
+
:type precision: int
|
502 |
+
:param multithreading: Use multithreading instead of distributed backend. Default is yes. Using procs=0 will turn off both.
|
503 |
+
:type multithreading: bool
|
504 |
+
:param **kwargs: Other options passed to SymbolicRegression.Options, for example, if you modify SymbolicRegression.jl to include additional arguments.
|
505 |
+
:type **kwargs: dict
|
506 |
+
:returns: Results dataframe, giving complexity, MSE, and equations (as strings), as well as functional forms. If list, each element corresponds to a dataframe of equations for each output.
|
507 |
+
:type: pd.DataFrame/list
|
508 |
+
"""
|
509 |
+
super().__init__()
|
510 |
+
self.model_selection = model_selection
|
511 |
+
|
512 |
+
if binary_operators is None:
|
513 |
+
binary_operators = "+ * - /".split(" ")
|
514 |
+
if unary_operators is None:
|
515 |
+
unary_operators = []
|
516 |
+
if extra_sympy_mappings is None:
|
517 |
+
extra_sympy_mappings = {}
|
518 |
+
if variable_names is None:
|
519 |
+
variable_names = []
|
520 |
+
if constraints is None:
|
521 |
+
constraints = {}
|
522 |
+
if multithreading is None:
|
523 |
+
# Default is multithreading=True, unless explicitly set,
|
524 |
+
# or procs is set to 0 (serial mode).
|
525 |
+
multithreading = procs != 0
|
526 |
+
|
527 |
+
buffer_available = "buffer" in sys.stdout.__dir__()
|
528 |
+
|
529 |
+
if progress is not None:
|
530 |
+
if progress and not buffer_available:
|
531 |
+
warnings.warn(
|
532 |
+
"Note: it looks like you are running in Jupyter. The progress bar will be turned off."
|
533 |
+
)
|
534 |
+
progress = False
|
535 |
+
else:
|
536 |
+
progress = buffer_available
|
537 |
+
|
538 |
+
assert optimizer_algorithm in ["NelderMead", "BFGS"]
|
539 |
+
assert tournament_selection_n < npop
|
540 |
+
|
541 |
+
if extra_jax_mappings is not None:
|
542 |
+
for value in extra_jax_mappings.values():
|
543 |
+
if not isinstance(value, str):
|
544 |
+
raise NotImplementedError(
|
545 |
+
"extra_jax_mappings must have keys that are strings! e.g., {sympy.sqrt: 'jnp.sqrt'}."
|
546 |
+
)
|
547 |
+
|
548 |
+
if extra_torch_mappings is not None:
|
549 |
+
for value in extra_jax_mappings.values():
|
550 |
+
if not callable(value):
|
551 |
+
raise NotImplementedError(
|
552 |
+
"extra_torch_mappings must be callable functions! e.g., {sympy.sqrt: torch.sqrt}."
|
553 |
+
)
|
554 |
+
|
555 |
+
if maxsize > 40:
|
556 |
+
warnings.warn(
|
557 |
+
"Note: Using a large maxsize for the equation search will be exponentially slower and use significant memory. You should consider turning `useFrequency` to False, and perhaps use `warmupMaxsizeBy`."
|
558 |
+
)
|
559 |
+
elif maxsize < 7:
|
560 |
+
raise NotImplementedError("PySR requires a maxsize of at least 7")
|
561 |
+
|
562 |
+
if maxdepth is None:
|
563 |
+
maxdepth = maxsize
|
564 |
+
|
565 |
+
if isinstance(binary_operators, str):
|
566 |
+
binary_operators = [binary_operators]
|
567 |
+
if isinstance(unary_operators, str):
|
568 |
+
unary_operators = [unary_operators]
|
569 |
+
|
570 |
+
self.params = {
|
571 |
+
**dict(
|
572 |
+
weights=weights,
|
573 |
+
binary_operators=binary_operators,
|
574 |
+
unary_operators=unary_operators,
|
575 |
+
procs=procs,
|
576 |
+
loss=loss,
|
577 |
+
populations=populations,
|
578 |
+
niterations=niterations,
|
579 |
+
ncyclesperiteration=ncyclesperiteration,
|
580 |
+
alpha=alpha,
|
581 |
+
annealing=annealing,
|
582 |
+
fractionReplaced=fractionReplaced,
|
583 |
+
fractionReplacedHof=fractionReplacedHof,
|
584 |
+
npop=npop,
|
585 |
+
parsimony=float(parsimony),
|
586 |
+
migration=migration,
|
587 |
+
hofMigration=hofMigration,
|
588 |
+
shouldOptimizeConstants=shouldOptimizeConstants,
|
589 |
+
topn=topn,
|
590 |
+
weightAddNode=weightAddNode,
|
591 |
+
weightInsertNode=weightInsertNode,
|
592 |
+
weightDeleteNode=weightDeleteNode,
|
593 |
+
weightDoNothing=weightDoNothing,
|
594 |
+
weightMutateConstant=weightMutateConstant,
|
595 |
+
weightMutateOperator=weightMutateOperator,
|
596 |
+
weightRandomize=weightRandomize,
|
597 |
+
weightSimplify=weightSimplify,
|
598 |
+
perturbationFactor=perturbationFactor,
|
599 |
+
verbosity=verbosity,
|
600 |
+
progress=progress,
|
601 |
+
maxsize=maxsize,
|
602 |
+
fast_cycle=fast_cycle,
|
603 |
+
maxdepth=maxdepth,
|
604 |
+
batching=batching,
|
605 |
+
batchSize=batchSize,
|
606 |
+
select_k_features=select_k_features,
|
607 |
+
warmupMaxsizeBy=warmupMaxsizeBy,
|
608 |
+
constraints=constraints,
|
609 |
+
useFrequency=useFrequency,
|
610 |
+
tempdir=tempdir,
|
611 |
+
delete_tempfiles=delete_tempfiles,
|
612 |
+
update=update,
|
613 |
+
temp_equation_file=temp_equation_file,
|
614 |
+
optimizer_algorithm=optimizer_algorithm,
|
615 |
+
optimizer_nrestarts=optimizer_nrestarts,
|
616 |
+
optimize_probability=optimize_probability,
|
617 |
+
optimizer_iterations=optimizer_iterations,
|
618 |
+
tournament_selection_n=tournament_selection_n,
|
619 |
+
tournament_selection_p=tournament_selection_p,
|
620 |
+
denoise=denoise,
|
621 |
+
Xresampled=Xresampled,
|
622 |
+
precision=precision,
|
623 |
+
multithreading=multithreading,
|
624 |
+
),
|
625 |
+
**kwargs,
|
626 |
+
}
|
627 |
+
|
628 |
+
# Stored equations:
|
629 |
+
self.equations = None
|
630 |
+
|
631 |
+
self.multioutput = None
|
632 |
+
self.raw_julia_output = None
|
633 |
+
self.equation_file = equation_file
|
634 |
+
self.n_features = None
|
635 |
+
self.extra_sympy_mappings = extra_sympy_mappings
|
636 |
+
self.extra_torch_mappings = extra_torch_mappings
|
637 |
+
self.extra_jax_mappings = extra_jax_mappings
|
638 |
+
self.output_jax_format = output_jax_format
|
639 |
+
self.output_torch_format = output_torch_format
|
640 |
+
self.nout = 1
|
641 |
+
self.selection = None
|
642 |
+
self.variable_names = variable_names
|
643 |
+
self.julia_project = julia_project
|
644 |
+
|
645 |
+
self.surface_parameters = [
|
646 |
+
"model_selection",
|
647 |
+
"multioutput",
|
648 |
+
"raw_julia_output",
|
649 |
+
"equation_file",
|
650 |
+
"n_features",
|
651 |
+
"extra_sympy_mappings",
|
652 |
+
"extra_torch_mappings",
|
653 |
+
"extra_jax_mappings",
|
654 |
+
"output_jax_format",
|
655 |
+
"output_torch_format",
|
656 |
+
"nout",
|
657 |
+
"selection",
|
658 |
+
"variable_names",
|
659 |
+
"julia_project"
|
660 |
+
]
|
661 |
+
|
662 |
+
def __repr__(self):
|
663 |
+
if self.equations is None:
|
664 |
+
return "PySRRegressor.equations = None"
|
665 |
+
|
666 |
+
equations = self.equations
|
667 |
+
selected = ["" for _ in range(len(equations))]
|
668 |
+
if self.model_selection == "accuracy":
|
669 |
+
chosen_row = -1
|
670 |
+
elif self.model_selection == "best":
|
671 |
+
chosen_row = equations["score"].idxmax()
|
672 |
+
else:
|
673 |
+
raise NotImplementedError
|
674 |
+
selected[chosen_row] = ">>>>"
|
675 |
+
output = "PySRRegressor.equations = [\n"
|
676 |
+
repr_equations = pd.DataFrame(
|
677 |
+
dict(
|
678 |
+
pick=selected,
|
679 |
+
score=equations["score"],
|
680 |
+
Equation=equations["Equation"],
|
681 |
+
MSE=equations["MSE"],
|
682 |
+
Complexity=equations["Complexity"],
|
683 |
+
)
|
684 |
+
)
|
685 |
+
output += repr_equations.__repr__()
|
686 |
+
output += "\n]"
|
687 |
+
return output
|
688 |
+
|
689 |
+
def set_params(self, **params):
|
690 |
+
"""Set parameters for pysr.pysr call or model_selection strategy."""
|
691 |
+
for key, value in params.items():
|
692 |
+
if key in self.surface_parameters:
|
693 |
+
self.__setattr__(key, value)
|
694 |
+
else:
|
695 |
+
self.params[key] = value
|
696 |
+
|
697 |
+
self.refresh()
|
698 |
+
return self
|
699 |
+
|
700 |
+
def get_params(self, deep=True):
|
701 |
+
del deep
|
702 |
+
return {
|
703 |
+
**self.params,
|
704 |
+
**{p: self.__getattribute__(key) for key in self.surface_parameters},
|
705 |
+
}
|
706 |
+
|
707 |
+
def get_best(self):
|
708 |
+
if self.equations is None:
|
709 |
+
return 0.0
|
710 |
+
if self.model_selection == "accuracy":
|
711 |
+
return self.equations.iloc[-1]
|
712 |
+
elif self.model_selection == "best":
|
713 |
+
return best_row(self.equations)
|
714 |
+
else:
|
715 |
+
raise NotImplementedError
|
716 |
+
|
717 |
+
def fit(self, X, y, weights=None, variable_names=None):
|
718 |
+
"""Search for equations to fit the dataset.
|
719 |
+
|
720 |
+
:param X: 2D array. Rows are examples, columns are features. If pandas DataFrame, the columns are used for variable names (so make sure they don't contain spaces).
|
721 |
+
:type X: np.ndarray/pandas.DataFrame
|
722 |
+
:param y: 1D array (rows are examples) or 2D array (rows are examples, columns are outputs). Putting in a 2D array will trigger a search for equations for each feature of y.
|
723 |
+
:type y: np.ndarray
|
724 |
+
:param weights: Optional. Same shape as y. Each element is how to weight the mean-square-error loss for that particular element of y.
|
725 |
+
:type weights: np.ndarray
|
726 |
+
:param variable_names: a list of names for the variables, other than "x0", "x1", etc.
|
727 |
+
:type variable_names: list
|
728 |
+
"""
|
729 |
+
if variable_names is None:
|
730 |
+
variable_names = self.variable_names
|
731 |
+
|
732 |
+
self._run(
|
733 |
+
X=X,
|
734 |
+
y=y,
|
735 |
+
weights=weights,
|
736 |
+
variable_names=variable_names,
|
737 |
+
)
|
738 |
+
|
739 |
+
return self
|
740 |
+
|
741 |
+
def refresh(self):
|
742 |
+
# Updates self.equations with any new options passed,
|
743 |
+
# such as extra_sympy_mappings.
|
744 |
+
self.equations = self.get_hof()
|
745 |
+
|
746 |
+
def predict(self, X):
|
747 |
+
self.refresh()
|
748 |
+
np_format = self.get_best()["lambda_format"]
|
749 |
+
return np_format(X)
|
750 |
+
|
751 |
+
def sympy(self):
|
752 |
+
self.refresh()
|
753 |
+
return self.get_best()["sympy_format"]
|
754 |
+
|
755 |
+
def latex(self):
|
756 |
+
self.refresh()
|
757 |
+
return self.sympy().simplify()
|
758 |
+
|
759 |
+
def jax(self):
|
760 |
+
self.set_params(output_jax_format=True)
|
761 |
+
self.refresh()
|
762 |
+
return self.get_best()["jax_format"]
|
763 |
+
|
764 |
+
def pytorch(self):
|
765 |
+
self.set_params(output_torch_format=True)
|
766 |
+
self.refresh()
|
767 |
+
return self.get_best()["torch_format"]
|
768 |
+
|
769 |
+
def _run(self, X, y, weights, variable_names):
|
770 |
+
global already_ran
|
771 |
+
global Main
|
772 |
+
|
773 |
+
for key in self.surface_parameters:
|
774 |
+
if key in self.params:
|
775 |
+
raise ValueError(
|
776 |
+
f"{key} is a surface parameter, and cannot be in self.params"
|
777 |
+
)
|
778 |
+
|
779 |
+
multithreading = self.params["multithreading"]
|
780 |
+
procs = self.params["procs"]
|
781 |
+
binary_operators = self.params["binary_operators"]
|
782 |
+
unary_operators = self.params["unary_operators"]
|
783 |
+
batching = self.params["batching"]
|
784 |
+
maxsize = self.params["maxsize"]
|
785 |
+
select_k_features = self.params["select_k_features"]
|
786 |
+
Xresampled = self.params["Xresampled"]
|
787 |
+
denoise = self.params["denoise"]
|
788 |
+
constraints = self.params["constraints"]
|
789 |
+
update = self.params["update"]
|
790 |
+
loss = self.params["loss"]
|
791 |
+
weightMutateConstant = self.params["weightMutateConstant"]
|
792 |
+
weightMutateOperator = self.params["weightMutateOperator"]
|
793 |
+
weightAddNode = self.params["weightAddNode"]
|
794 |
+
weightInsertNode = self.params["weightInsertNode"]
|
795 |
+
weightDeleteNode = self.params["weightDeleteNode"]
|
796 |
+
weightSimplify = self.params["weightSimplify"]
|
797 |
+
weightRandomize = self.params["weightRandomize"]
|
798 |
+
weightDoNothing = self.params["weightDoNothing"]
|
799 |
+
|
800 |
+
if Main is None:
|
801 |
+
if multithreading:
|
802 |
+
os.environ["JULIA_NUM_THREADS"] = str(procs)
|
803 |
+
|
804 |
+
Main = init_julia()
|
805 |
+
|
806 |
+
if isinstance(X, pd.DataFrame):
|
807 |
+
if variable_names is not None:
|
808 |
+
warnings.warn("Resetting variable_names from X.columns")
|
809 |
+
|
810 |
+
variable_names = list(X.columns)
|
811 |
+
X = np.array(X)
|
812 |
+
|
813 |
+
if len(X.shape) == 1:
|
814 |
+
X = X[:, None]
|
815 |
+
|
816 |
+
assert not isinstance(y, pd.DataFrame)
|
817 |
+
|
818 |
+
if len(variable_names) == 0:
|
819 |
+
variable_names = [f"x{i}" for i in range(X.shape[1])]
|
820 |
+
|
821 |
+
use_custom_variable_names = len(variable_names) != 0
|
822 |
+
# TODO: this is always true.
|
823 |
+
|
824 |
+
_check_assertions(
|
825 |
+
X,
|
826 |
+
binary_operators,
|
827 |
+
unary_operators,
|
828 |
+
use_custom_variable_names,
|
829 |
+
variable_names,
|
830 |
+
weights,
|
831 |
+
y,
|
832 |
+
)
|
833 |
+
|
834 |
+
self.n_features = X.shape[1]
|
835 |
+
|
836 |
+
if len(X) > 10000 and not batching:
|
837 |
+
warnings.warn(
|
838 |
+
"Note: you are running with more than 10,000 datapoints. You should consider turning on batching (https://pysr.readthedocs.io/en/latest/docs/options/#batching). You should also reconsider if you need that many datapoints. Unless you have a large amount of noise (in which case you should smooth your dataset first), generally < 10,000 datapoints is enough to find a functional form with symbolic regression. More datapoints will lower the search speed."
|
839 |
+
)
|
840 |
+
|
841 |
+
X, selection = _handle_feature_selection(
|
842 |
+
X, select_k_features, y, variable_names
|
843 |
+
)
|
844 |
+
|
845 |
+
if len(y.shape) == 1 or (len(y.shape) == 2 and y.shape[1] == 1):
|
846 |
+
self.multioutput = False
|
847 |
+
nout = 1
|
848 |
+
y = y.reshape(-1)
|
849 |
+
elif len(y.shape) == 2:
|
850 |
+
self.multioutput = True
|
851 |
+
nout = y.shape[1]
|
852 |
+
else:
|
853 |
+
raise NotImplementedError("y shape not supported!")
|
854 |
+
|
855 |
+
if denoise:
|
856 |
+
if weights is not None:
|
857 |
+
raise NotImplementedError(
|
858 |
+
"No weights for denoising - the weights are learned."
|
859 |
+
)
|
860 |
+
if Xresampled is not None:
|
861 |
+
# Select among only the selected features:
|
862 |
+
if isinstance(Xresampled, pd.DataFrame):
|
863 |
+
# Handle Xresampled is pandas dataframe
|
864 |
+
if selection is not None:
|
865 |
+
Xresampled = Xresampled[[variable_names[i] for i in selection]]
|
866 |
+
else:
|
867 |
+
Xresampled = Xresampled[variable_names]
|
868 |
+
Xresampled = np.array(Xresampled)
|
869 |
+
else:
|
870 |
+
if selection is not None:
|
871 |
+
Xresampled = Xresampled[:, selection]
|
872 |
+
if self.multioutput:
|
873 |
+
y = np.stack(
|
874 |
+
[
|
875 |
+
_denoise(X, y[:, i], Xresampled=Xresampled)[1]
|
876 |
+
for i in range(nout)
|
877 |
+
],
|
878 |
+
axis=1,
|
879 |
+
)
|
880 |
+
if Xresampled is not None:
|
881 |
+
X = Xresampled
|
882 |
+
else:
|
883 |
+
X, y = _denoise(X, y, Xresampled=Xresampled)
|
884 |
+
|
885 |
+
self.julia_project = _get_julia_project(self.julia_project)
|
886 |
+
|
887 |
+
tmpdir = Path(tempfile.mkdtemp(dir=self.params["tempdir"]))
|
888 |
+
|
889 |
+
if self.params["temp_equation_file"]:
|
890 |
+
self.equation_file = tmpdir / "hall_of_fame.csv"
|
891 |
+
elif self.equation_file is None:
|
892 |
+
date_time = datetime.now().strftime("%Y-%m-%d_%H%M%S.%f")[:-3]
|
893 |
+
self.equation_file = "hall_of_fame_" + date_time + ".csv"
|
894 |
+
|
895 |
+
_create_inline_operators(
|
896 |
+
binary_operators=binary_operators, unary_operators=unary_operators
|
897 |
+
)
|
898 |
+
_handle_constraints(
|
899 |
+
binary_operators=binary_operators,
|
900 |
+
unary_operators=unary_operators,
|
901 |
+
constraints=constraints,
|
902 |
+
)
|
903 |
+
|
904 |
+
una_constraints = [constraints[op] for op in unary_operators]
|
905 |
+
bin_constraints = [constraints[op] for op in binary_operators]
|
906 |
+
|
907 |
+
try:
|
908 |
+
# TODO: is this needed since Julia now prints directly to stdout?
|
909 |
+
term_width = shutil.get_terminal_size().columns
|
910 |
+
except:
|
911 |
+
_, term_width = subprocess.check_output(["stty", "size"]).split()
|
912 |
+
|
913 |
+
if not already_ran:
|
914 |
+
from julia import Pkg
|
915 |
+
|
916 |
+
Pkg.activate(f"{_escape_filename(self.julia_project)}")
|
917 |
+
try:
|
918 |
+
if update:
|
919 |
+
Pkg.resolve()
|
920 |
+
Pkg.instantiate()
|
921 |
+
else:
|
922 |
+
Pkg.instantiate()
|
923 |
+
except RuntimeError as e:
|
924 |
+
raise ImportError(
|
925 |
+
f"""
|
926 |
+
Required dependencies are not installed or built. Run the following code in the Python REPL:
|
927 |
+
|
928 |
+
>>> import pysr
|
929 |
+
>>> pysr.install()
|
930 |
+
|
931 |
+
Tried to activate project {self.julia_project} but failed."""
|
932 |
+
) from e
|
933 |
+
Main.eval("using SymbolicRegression")
|
934 |
+
|
935 |
+
Main.plus = Main.eval("(+)")
|
936 |
+
Main.sub = Main.eval("(-)")
|
937 |
+
Main.mult = Main.eval("(*)")
|
938 |
+
Main.pow = Main.eval("(^)")
|
939 |
+
Main.div = Main.eval("(/)")
|
940 |
+
|
941 |
+
Main.custom_loss = Main.eval(loss)
|
942 |
+
|
943 |
+
mutationWeights = [
|
944 |
+
float(weightMutateConstant),
|
945 |
+
float(weightMutateOperator),
|
946 |
+
float(weightAddNode),
|
947 |
+
float(weightInsertNode),
|
948 |
+
float(weightDeleteNode),
|
949 |
+
float(weightSimplify),
|
950 |
+
float(weightRandomize),
|
951 |
+
float(weightDoNothing),
|
952 |
+
]
|
953 |
+
|
954 |
+
options = Main.Options(
|
955 |
+
binary_operators=Main.eval(str(tuple(binary_operators)).replace("'", "")),
|
956 |
+
unary_operators=Main.eval(str(tuple(unary_operators)).replace("'", "")),
|
957 |
+
bin_constraints=bin_constraints,
|
958 |
+
una_constraints=una_constraints,
|
959 |
+
loss=Main.custom_loss,
|
960 |
+
maxsize=int(maxsize),
|
961 |
+
hofFile=_escape_filename(self.equation_file),
|
962 |
+
npopulations=int(self.params["populations"]),
|
963 |
+
batching=batching,
|
964 |
+
batchSize=int(
|
965 |
+
min([self.params["batchSize"], len(X)]) if batching else len(X)
|
966 |
+
),
|
967 |
+
mutationWeights=mutationWeights,
|
968 |
+
terminal_width=int(term_width),
|
969 |
+
probPickFirst=self.params["tournament_selection_p"],
|
970 |
+
ns=self.params["tournament_selection_n"],
|
971 |
+
# These have the same name:
|
972 |
+
parsimony=self.params["parsimony"],
|
973 |
+
alpha=self.params["alpha"],
|
974 |
+
maxdepth=self.params["maxdepth"],
|
975 |
+
fast_cycle=self.params["fast_cycle"],
|
976 |
+
migration=self.params["migration"],
|
977 |
+
hofMigration=self.params["hofMigration"],
|
978 |
+
fractionReplacedHof=self.params["fractionReplacedHof"],
|
979 |
+
shouldOptimizeConstants=self.params["shouldOptimizeConstants"],
|
980 |
+
warmupMaxsizeBy=self.params["warmupMaxsizeBy"],
|
981 |
+
useFrequency=self.params["useFrequency"],
|
982 |
+
npop=self.params["npop"],
|
983 |
+
ncyclesperiteration=self.params["ncyclesperiteration"],
|
984 |
+
fractionReplaced=self.params["fractionReplaced"],
|
985 |
+
topn=self.params["topn"],
|
986 |
+
verbosity=self.params["verbosity"],
|
987 |
+
optimizer_algorithm=self.params["optimizer_algorithm"],
|
988 |
+
optimizer_nrestarts=self.params["optimizer_nrestarts"],
|
989 |
+
optimize_probability=self.params["optimize_probability"],
|
990 |
+
optimizer_iterations=self.params["optimizer_iterations"],
|
991 |
+
perturbationFactor=self.params["perturbationFactor"],
|
992 |
+
annealing=self.params["annealing"],
|
993 |
+
)
|
994 |
+
|
995 |
+
np_dtype = {16: np.float16, 32: np.float32, 64: np.float64}[
|
996 |
+
self.params["precision"]
|
997 |
+
]
|
998 |
+
|
999 |
+
Main.X = np.array(X, dtype=np_dtype).T
|
1000 |
+
if len(y.shape) == 1:
|
1001 |
+
Main.y = np.array(y, dtype=np_dtype)
|
1002 |
+
else:
|
1003 |
+
Main.y = np.array(y, dtype=np_dtype).T
|
1004 |
+
if weights is not None:
|
1005 |
+
if len(weights.shape) == 1:
|
1006 |
+
Main.weights = np.array(weights, dtype=np_dtype)
|
1007 |
+
else:
|
1008 |
+
Main.weights = np.array(weights, dtype=np_dtype).T
|
1009 |
+
else:
|
1010 |
+
Main.weights = None
|
1011 |
+
|
1012 |
+
cprocs = 0 if multithreading else procs
|
1013 |
+
|
1014 |
+
self.raw_julia_output = Main.EquationSearch(
|
1015 |
+
Main.X,
|
1016 |
+
Main.y,
|
1017 |
+
weights=Main.weights,
|
1018 |
+
niterations=int(self.params["niterations"]),
|
1019 |
+
varMap=(
|
1020 |
+
variable_names
|
1021 |
+
if selection is None
|
1022 |
+
else [variable_names[i] for i in selection]
|
1023 |
+
),
|
1024 |
+
options=options,
|
1025 |
+
numprocs=int(cprocs),
|
1026 |
+
multithreading=bool(multithreading),
|
1027 |
+
)
|
1028 |
+
|
1029 |
+
self.variable_names = variable_names
|
1030 |
+
self.selection = selection
|
1031 |
+
|
1032 |
+
# Not in params:
|
1033 |
+
# selection, variable_names, multioutput
|
1034 |
+
|
1035 |
+
self.equations = self.get_hof()
|
1036 |
+
|
1037 |
+
if self.params["delete_tempfiles"]:
|
1038 |
+
shutil.rmtree(tmpdir)
|
1039 |
+
|
1040 |
+
already_ran = True
|
1041 |
+
|
1042 |
+
def get_hof(self):
|
1043 |
+
"""Get the equations from a hall of fame file. If no arguments
|
1044 |
+
entered, the ones used previously from a call to PySR will be used."""
|
1045 |
+
|
1046 |
+
try:
|
1047 |
+
if self.multioutput:
|
1048 |
+
all_outputs = [
|
1049 |
+
pd.read_csv(
|
1050 |
+
str(self.equation_file) + f".out{i}" + ".bkup",
|
1051 |
+
sep="|",
|
1052 |
+
)
|
1053 |
+
for i in range(1, self.nout + 1)
|
1054 |
+
]
|
1055 |
+
else:
|
1056 |
+
all_outputs = [pd.read_csv(str(self.equation_file) + ".bkup", sep="|")]
|
1057 |
+
except FileNotFoundError:
|
1058 |
+
raise RuntimeError(
|
1059 |
+
"Couldn't find equation file! The equation search likely exited before a single iteration completed."
|
1060 |
+
)
|
1061 |
+
|
1062 |
+
ret_outputs = []
|
1063 |
+
|
1064 |
+
for output in all_outputs:
|
1065 |
+
|
1066 |
+
scores = []
|
1067 |
+
lastMSE = None
|
1068 |
+
lastComplexity = 0
|
1069 |
+
sympy_format = []
|
1070 |
+
lambda_format = []
|
1071 |
+
if self.output_jax_format:
|
1072 |
+
jax_format = []
|
1073 |
+
if self.output_torch_format:
|
1074 |
+
torch_format = []
|
1075 |
+
use_custom_variable_names = len(self.variable_names) != 0
|
1076 |
+
local_sympy_mappings = {
|
1077 |
+
**self.extra_sympy_mappings,
|
1078 |
+
**sympy_mappings,
|
1079 |
+
}
|
1080 |
+
|
1081 |
+
if use_custom_variable_names:
|
1082 |
+
sympy_symbols = [
|
1083 |
+
sympy.Symbol(self.variable_names[i]) for i in range(self.n_features)
|
1084 |
+
]
|
1085 |
+
else:
|
1086 |
+
sympy_symbols = [
|
1087 |
+
sympy.Symbol("x%d" % i) for i in range(self.n_features)
|
1088 |
+
]
|
1089 |
+
|
1090 |
+
for _, eqn_row in output.iterrows():
|
1091 |
+
eqn = sympify(eqn_row["Equation"], locals=local_sympy_mappings)
|
1092 |
+
sympy_format.append(eqn)
|
1093 |
+
|
1094 |
+
# Numpy:
|
1095 |
+
lambda_format.append(
|
1096 |
+
CallableEquation(
|
1097 |
+
sympy_symbols, eqn, self.selection, self.variable_names
|
1098 |
+
)
|
1099 |
+
)
|
1100 |
+
|
1101 |
+
# JAX:
|
1102 |
+
if self.output_jax_format:
|
1103 |
+
from .export_jax import sympy2jax
|
1104 |
+
|
1105 |
+
func, params = sympy2jax(
|
1106 |
+
eqn,
|
1107 |
+
sympy_symbols,
|
1108 |
+
selection=self.selection,
|
1109 |
+
extra_jax_mappings=self.extra_jax_mappings,
|
1110 |
+
)
|
1111 |
+
jax_format.append({"callable": func, "parameters": params})
|
1112 |
+
|
1113 |
+
# Torch:
|
1114 |
+
if self.output_torch_format:
|
1115 |
+
from .export_torch import sympy2torch
|
1116 |
+
|
1117 |
+
module = sympy2torch(
|
1118 |
+
eqn,
|
1119 |
+
sympy_symbols,
|
1120 |
+
selection=self.selection,
|
1121 |
+
extra_torch_mappings=self.extra_torch_mappings,
|
1122 |
+
)
|
1123 |
+
torch_format.append(module)
|
1124 |
+
|
1125 |
+
curMSE = eqn_row["MSE"]
|
1126 |
+
curComplexity = eqn_row["Complexity"]
|
1127 |
+
|
1128 |
+
if lastMSE is None:
|
1129 |
+
cur_score = 0.0
|
1130 |
+
else:
|
1131 |
+
if curMSE > 0.0:
|
1132 |
+
cur_score = -np.log(curMSE / lastMSE) / (
|
1133 |
+
curComplexity - lastComplexity
|
1134 |
+
)
|
1135 |
+
else:
|
1136 |
+
cur_score = np.inf
|
1137 |
+
|
1138 |
+
scores.append(cur_score)
|
1139 |
+
lastMSE = curMSE
|
1140 |
+
lastComplexity = curComplexity
|
1141 |
+
|
1142 |
+
output["score"] = np.array(scores)
|
1143 |
+
output["sympy_format"] = sympy_format
|
1144 |
+
output["lambda_format"] = lambda_format
|
1145 |
+
output_cols = [
|
1146 |
+
"Complexity",
|
1147 |
+
"MSE",
|
1148 |
+
"score",
|
1149 |
+
"Equation",
|
1150 |
+
"sympy_format",
|
1151 |
+
"lambda_format",
|
1152 |
+
]
|
1153 |
+
if self.output_jax_format:
|
1154 |
+
output_cols += ["jax_format"]
|
1155 |
+
output["jax_format"] = jax_format
|
1156 |
+
if self.output_torch_format:
|
1157 |
+
output_cols += ["torch_format"]
|
1158 |
+
output["torch_format"] = torch_format
|
1159 |
+
|
1160 |
+
ret_outputs.append(output[output_cols])
|
1161 |
+
|
1162 |
+
if self.multioutput:
|
1163 |
+
return ret_outputs
|
1164 |
+
return ret_outputs[0]
|