Spaces:
Running
Running
deepsource-autofix[bot]
commited on
Format code with black
Browse files- pysr/sr.py +3 -3
pysr/sr.py
CHANGED
@@ -670,7 +670,7 @@ class PySRRegressor(BaseEstimator, RegressorMixin):
|
|
670 |
|
671 |
def __repr__(self):
|
672 |
"""Prints all current equations fitted by the model.
|
673 |
-
|
674 |
The string `>>>>` denotes which equation is selected by the
|
675 |
`model_selection`.
|
676 |
"""
|
@@ -819,7 +819,7 @@ class PySRRegressor(BaseEstimator, RegressorMixin):
|
|
819 |
|
820 |
def jax(self):
|
821 |
"""Return jax representation of the equation(s) chosen by `model_selection`.
|
822 |
-
|
823 |
Each equation (multiple given if there are multiple outputs) is a dictionary
|
824 |
containing {"callable": func, "parameters": params}. To call `func`, pass
|
825 |
func(X, params). This function is differentiable using `jax.grad`.
|
@@ -839,7 +839,7 @@ class PySRRegressor(BaseEstimator, RegressorMixin):
|
|
839 |
|
840 |
def pytorch(self):
|
841 |
"""Return pytorch representation of the equation(s) chosen by `model_selection`.
|
842 |
-
|
843 |
Each equation (multiple given if there are multiple outputs) is a PyTorch module
|
844 |
containing the parameters as trainable attributes. You can use the module like
|
845 |
any other PyTorch module: `module(X)`, where `X` is a tensor with the same
|
|
|
670 |
|
671 |
def __repr__(self):
|
672 |
"""Prints all current equations fitted by the model.
|
673 |
+
|
674 |
The string `>>>>` denotes which equation is selected by the
|
675 |
`model_selection`.
|
676 |
"""
|
|
|
819 |
|
820 |
def jax(self):
|
821 |
"""Return jax representation of the equation(s) chosen by `model_selection`.
|
822 |
+
|
823 |
Each equation (multiple given if there are multiple outputs) is a dictionary
|
824 |
containing {"callable": func, "parameters": params}. To call `func`, pass
|
825 |
func(X, params). This function is differentiable using `jax.grad`.
|
|
|
839 |
|
840 |
def pytorch(self):
|
841 |
"""Return pytorch representation of the equation(s) chosen by `model_selection`.
|
842 |
+
|
843 |
Each equation (multiple given if there are multiple outputs) is a PyTorch module
|
844 |
containing the parameters as trainable attributes. You can use the module like
|
845 |
any other PyTorch module: `module(X)`, where `X` is a tensor with the same
|