deepsource-autofix[bot] commited on
Commit
70a6907
·
unverified ·
1 Parent(s): 35a3c2d

Format code with black

Browse files
Files changed (1) hide show
  1. pysr/sr.py +3 -3
pysr/sr.py CHANGED
@@ -670,7 +670,7 @@ class PySRRegressor(BaseEstimator, RegressorMixin):
670
 
671
  def __repr__(self):
672
  """Prints all current equations fitted by the model.
673
-
674
  The string `>>>>` denotes which equation is selected by the
675
  `model_selection`.
676
  """
@@ -819,7 +819,7 @@ class PySRRegressor(BaseEstimator, RegressorMixin):
819
 
820
  def jax(self):
821
  """Return jax representation of the equation(s) chosen by `model_selection`.
822
-
823
  Each equation (multiple given if there are multiple outputs) is a dictionary
824
  containing {"callable": func, "parameters": params}. To call `func`, pass
825
  func(X, params). This function is differentiable using `jax.grad`.
@@ -839,7 +839,7 @@ class PySRRegressor(BaseEstimator, RegressorMixin):
839
 
840
  def pytorch(self):
841
  """Return pytorch representation of the equation(s) chosen by `model_selection`.
842
-
843
  Each equation (multiple given if there are multiple outputs) is a PyTorch module
844
  containing the parameters as trainable attributes. You can use the module like
845
  any other PyTorch module: `module(X)`, where `X` is a tensor with the same
 
670
 
671
  def __repr__(self):
672
  """Prints all current equations fitted by the model.
673
+
674
  The string `>>>>` denotes which equation is selected by the
675
  `model_selection`.
676
  """
 
819
 
820
  def jax(self):
821
  """Return jax representation of the equation(s) chosen by `model_selection`.
822
+
823
  Each equation (multiple given if there are multiple outputs) is a dictionary
824
  containing {"callable": func, "parameters": params}. To call `func`, pass
825
  func(X, params). This function is differentiable using `jax.grad`.
 
839
 
840
  def pytorch(self):
841
  """Return pytorch representation of the equation(s) chosen by `model_selection`.
842
+
843
  Each equation (multiple given if there are multiple outputs) is a PyTorch module
844
  containing the parameters as trainable attributes. You can use the module like
845
  any other PyTorch module: `module(X)`, where `X` is a tensor with the same